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1 Spacecraft design 
This section describes how to create a new vessel class for Orbiter by writing a vessel DLL 
module. Although it is possible to create simple vessel classes by writing a vessel configura-
tion file without a custom module, the full potential of Orbiter’s custom spacecraft design ca-
pabilities can only be realised with a specialised module. 
 

 

All vessels of a given class share the same DLL module. Orbiter only loads a single in-

stance of the DLL. This means that global variables are shared between all vessels of that 

class. Do not store data which are specific to individual vessels in global or static variables, 

because they can be overwritten by another vessel. 

1.1 Module initialisation 
When the user launches the simulation by picking a scenario from the Orbiter Launchpad 
dialog and pressing the “Launch Orbiter” button, Orbiter will load the vessel DLL module for 

each spacecraft type used in the simulation, and call its InitModule function. This function 

is called only once per Orbiter session, no matter how many spacecraft of that type appear in 
the simulation. It will not be called again if the user exits the simulation to the Launchpad, and 
reloads another simulation scenario. You can use it to initialise global (non-instance specific 
and non-session specific) parameters. 
 
#define ORBITER_MODULE 

#include "orbitersdk.h" 

 

HINSTANCE g_hDLL; 

 

DLLCLBK void InitModule (HINSTANCE hModule) 

{ 

    g_hDLL = hModule; 

    // perform global module initialisation here 
} 

 

In this example, we use the InitModule function to save the module instance handle 

passed to the function in global variable g_hDLL. This handle is useful later, e.g. when load-

ing resources stored in the module file. Note the first line of the code example, which defines 

the ORBITER_MODULE flag. This flag should be included in all Orbiter DLL modules, to ensure 

proper execution of initialisation and cleanup functions. 

At the end of a simulation run, Orbiter calls the ExitModule function for each DLL module. 
 
DLLCLBK void ExitModule (HINSTANCE hModule) 

{ 

    // perform module cleanup here 
} 

 

If you performed any dynamic memory allocation in InitModule, this is a good place to 

perform the corresponding cleanup operations which de-allocate that memory. 

1.2 Vessel initialisation 
To allow initialisation of individual spacecraft, Orbiter will call the ovcInit function each time a 
scenario is loaded, for each vessel of that type listed in the scenario file. Orbiter will also call 
ovcInit during the simulation if a new vessel of this type is created. The main purpose of 
ovcInit is to create an instance of a VESSEL-derived interface class. VESSEL is a class de-
fined in the Orbiter API which is the primary means of communication between Orbiter and 
your own spacecraft class. In order to make use of the interface, you should derive your own 
vessel class derived from VESSEL. In ovcInit, you then create an instance of that class and 
return it back to Orbiter. Note that in the latest Orbiter version, the new VESSEL2 class has 
been introduced which inherits all the methods of VESSEL, and introduces a number of new 
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callback functions which replace the previous method of event notification. You should derive 
your vessel class from VESSEL2 to make use of this latest interface. 
 

As an example, let’s create a new class called MyVessel, and create an instance in 

ovcInit: 

 
class MyVessel: public VESSEL2 { 

public: 

    MyVessel (OBJHANDLE hObj, int fmodel): VESSEL2 (hObj, fmodel) {} 

    ~MyVessel () {} 

    // add more vessel methods here 
}; 

 

DLLCLBK VESSEL *ovcInit (OBJHANDLE hvessel, int flightmodel) 

{ 

    return new MyVessel (hvessel, flightmodel); 

} 

 

ovcInit passes two parameters to your module: a handle to the vessel for which you are 

about to create an interface, and a flag for the type of flight model requested by the user. Both 
parameters are passed on to the vessel constructor. The vessel handle is required to identify 
your vessel when requesting information from Orbiter. The flightmodel flag can be used to im-
plement different behaviour in your module, for example to define an “easy” and a “complex” 
flight model, which can then be selected by the user. You don’t need to store these parame-

ters in your module, because you can retrieve them with the GetHandle and GetFlight-

Model methods of the VESSEL class. 

 
To ensure proper cleanup at the end of a simulation session, you must implement the ovcExit 
function to delete your vessel: 
 
DLLCLBK void ovcExit (VESSEL *vessel) 

{ 

    if (vessel) delete (MyVessel*)vessel; 

} 

 

Note that you need to cast the generic VESSEL pointer passed by Orbiter to your own vessel 

class to ensure that the correct destructors are called. 

1.3 Reading and saving a vessel state 
Next, you need to make sure that your vessel is able to read its initial state from a scenario 
file at the start of a simulation, and to save its state in a scenario at the end of the simulation. 

This is done by overloading the clbkLoadStateEx and clbkSaveState methods of the 

VESSEL2 class. Note that you only need to overload these methods if your vessel requires 

nonstandard parameters to be stored in the scenario file. Standard parameters (such as posi-
tion or velocity) are automatically read and written by the base class methods. 
 
class MyVessel: public VESSEL2 { 

public: 

    MyVessel (OBJHANDLE hObj, int fmodel): VESSEL2 (hObj, fmodel) {} 

    ~MyVessel () {} 

    void clbkLoadStateEx (FILEHANDLE scn, void *status); 

    void clbkSaveState (FILEHANDLE scn); 

private: 

    double myparam; 

}; 

 

void MyVessel::clbkLoadStateEx (FILEHANDLE scn, void *status) 

{ 

    char *line; 

 

    while (oapiReadScenario_nextline (scn, line)) { 
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        if (!strnicmp (line, "MYPARAM", 7)) { 

            sscanf (line+7, "%lf", &myparam); 

        } else { 

            ParseScenarioLineEx (line, status); 

        } 

    } 

} 

 

void MyVessel::clbkSaveState (FILEHANDLE scn) 

{ 

    VESSEL2::clbkSaveState (scn); 

    oapiWriteScenario_float (scn, "MYPARAM", myparam); 

} 

 

 

In the code fragment above, we use the overloaded clbkLoadStateEx function to read my-

param from the scenario, were it is stored under the MYPARAM label. The function reads 

each line of the scenario file associated with our vessel, using the oapiReadSce-

nario_nextline function. In the loop, we process the MYPARAM line, and pass everything else to 

Orbiter via ParseScenarioLineEx for default processing. Likewise, in clbkSaveState, the base class 

method VESSEL2::clbkSaveState is called to store all default parameters, before writing our private 

MYPARAM value. Of course, a real vessel implementation may need to store a large number of pa-

rameters in the scenario to make sure its status is completely defined when the scenario is loaded next 

time. 

1.4 Defining class capabilities 
One of the most important callback functions that should be overloaded is the clbkSetClassCaps 

method. It defines the general capabilities and properties of your spacecraft, e.g. its mass, size, visual 

representation, engine layout etc. 

 

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg) 

{ 

    SetEmptyMass (1000.0); 

    SetSize (10.0); 

    AddMesh (oapiLoadMeshGlobal (“MyVessel.msh”)); 

    // define vessel capabilities here 

} 

 

In the above example, we define a few essential parameters (empty mass and mean radius), and load a 

mesh to provide a visual representation for our new spacecraft class. In practical applications, many 

more parameters may have to be defined here. Note that the file handle passed to the function points to 

the configuration file (.cfg) of the vessel. This can be used to read parameters from the file, thereby al-

lowing the user to overwrite parameters by editing the configuration file. 

 

We now have a “skeleton implementation” for our new spacecraft class. To make it interesting, many 

more properties need to be defined, such as rocket engines (or air-breathing engines), aerodynamic 

properties, animations, etc. Some of these aspects are described in the rest of this chapter. For a com-

plete (and sometimes quite complex) vessel implementations, see the sample projects in the Orbit-

ersdk\samples subdirectory. 

1.5 Creating rocket engines 
To propel your ship in space, you must equip it with engines. There exist a variety of different 
rocket engine types, such as liquid and solid fuel engines, or more futuristic ones such as ion 
or photon drives. 
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1.5.1 A bit of theory 

Thrust force 
Despite their very different design, all engines work by the same principle: generating a thrust 
force in one direction by expelling particles in the opposite direction at high velocity. A liquid-
fuel engine, for example, consists of a burn chamber in which a mixture of propellant and 
oxydiser are ignited, and a nozzle through which the expanding gas is forced at high velocity. 
The force Fth generated by the engine is proportional to the propellant mass flow dm/dt and 
the velocity v0 of the expelled gas: 

0)( vt
dt

dm
Fth


 

When creating a thruster, you need to specify the maximum force Fth it can generate when it 
is driven at full power, and the propellant exit velocity v0. (in Orbiter, v0 is called the fuel-
specific impulse, or Isp). The Isp value determines how much fuel per second is consumed to 
obtain a given thrust force. The higher the Isp value, the more fuel-efficient the engine. 
 

-Fth Fth

Fuel

O2

 
 
Sometimes the thrust-specific fuel consumption (TSFC) is quoted in the literature. This is the 
amount of propellant that needs to be burned per second to obtain 1N of thrust. Thus the 
TSFC is the inverse of the Isp and has units of [s m

-1
], or more intuitively [kg s

-1
 N

-1
]. 

 
Note: In Orbiter, the thrust is specified as a force, and has units of Newton [1N = 1kg m s

-2
]. 

In the literature, thrust is often specified in units of kg. To convert such data into Orbiter units, 
multiply by 1g = 9.81 m s

-2
. Isp is specified as a velocity in Orbiter, with units of m s

-1
. In the 

literature it is often given in units of seconds [s]. To convert to Orbiter units, again multiply by 
1g. 
 
How long will my fuel last? 
The burn time Tb at full thrust Fmax for fuel mass mF is given by 

maxF

Ispm
T F

b  

 
Pressure-dependent thrust efficiency 
Most conventional rocket engines work less efficiently in the presence of ambient atmospheric 
pressure, because the ignited gas must be expelled through the nozzle against the outside 
pressure of the atmosphere. This leads to a reduction of the thrust force at ambient pressure 
p: 

pAFpF 0)(  

where F0 is the vacuum thrust rating and A has units of an area [m
2
] and can be regarded as 

the effective nozzle cross section. If we know the force F1 generated at ambient pressure p1, 
then 

1
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and likewise 
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)1()( 0 pIsppIsp  

In the literature, the pressure-dependency of engine thrust is often defined by specifying the 
Isp value for both vacuum and a given reference pressure (e.g. atmospheric pressure at sea 
level). Orbiter uses the same convention to apply pressure dependency. 
 
Thrust level 
In Orbiter, thrusters can be driven at any level L between 0 (cutout) and 1 (full thrust). The 
actual thrust force generated by the engine is thus calculated as 

LpFpF )()( max  

In reality, thrusters can often only be driven at maximum, or within a limited range below 
maximum. This is not currently implemented in Orbiter, but may be introduced in a future 
version. 
 
Thruster placement and thrust direction 
The effect of a thruster depends on its placement on the vessel, and the direction in which the 
thrust force is generated. In the most general case, a thruster will produce both a linear 
acceleration (due to a force) and an angular acceleration (do to torque). 
Torque is generated if the force vector does not pass through the vessel’s centre of gravity 
(CG) 

F

r CG
 

 
The torque is then given by the cross product 

rFM


 
(remember that Orbiter uses a left-handed coordinate system!) To avoid uncontrollable spin 

you should design your ship’s main engines so that their force vector passes through the CG. 

Vessel coordinates are always defined so that the CG is at the origin (0,0,0). Therefore, a 

thruster located at (0,0,-10) and generating thrust in direction (0,0,1) would not generate 

torque. 

 

Attitude thrusters: Rotation 

Sometimes generating torque is desired in order to rotate the spacecraft. For controlled 

attitude manouevres one then usually wants to change only the angular moment, without also 

inducing a linear acceleration. This requires the simultaneous operation of at least 2 thrusters 

so that their linear moments cancel. 

F

r-r

-F
 

 

Attitude thrusters: Translation 

In order to provide small linear accelerations in various directions (for example, to line the 

ship up with the docking port of a space station), thrusters must be driven single or in groups 

so that they don’t generate torque. Sometimes it is possible to re-use the rotational attitude 

thrusters for this task, but it is equally possible to add separate linear thrusters. 
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Engine gimbal and thrust vectoring 

Using attitude thrusters in a launch vehicle during the burn phase of the main engines is 

usually not practical. Instead, attitude control is performed by tilting the main engines and 

thereby generating a torque as described above. In practice this may be done by suspending 

the engines in a gimbal system which allows rotation around one or two axes. In Orbiter, this 

can be implemented by modifying the thrust direction of the engine. 

Another way to change the thrust direction is by inserting deflector plates into the exhaust 

stream. 

 

Torque, angular momentum and angular velocity 

The relationship between torque M and angular velocity is given by Euler’s equations for a 

rotating rigid body: 

yxxyzzz

xzzxyyy

zyyzxxx

JJMJ

JJMJ

JJMJ

)(

)(

)(







 

where (Jx, Jy, Jz) are the principal moments of the inertia tensor (PMI), (Mx, My, Mz) are the 

components of the torque tensor, and ( x, y, z) are the angular velocity components around 

the x, y, and z-axes. In Orbiter, this system of differential equations is solved by a trapezoid 

rule. 

1.5.2 Putting it all into the module 

Now that you know how thrusters work, it is time to add a few to your new ship. As with other 

vessel capabilities, thrusters should usually be designed in the clbkSetClassCaps callback 

function, for example like this (assuming that MyVessel is a class derived from VESSEL2): 

 
void MyVessel::clbkSetClassCaps (FILEHANDLE cfg) 

{ 

    // vessel caps definitions 

} 

 

 

Propellant resources 

Thrusters can only be operated if they are connected to propellant resources (e.g. fuel tanks). 

To create a propellant resource: 

 
class MyVessel: public VESSEL 

{ 

    ... 

    PROPELLANT_HANDLE ph_main; 

} 

 

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg) 

{ 

    ... 

    const double MAX_MAIN_FUEL = 1e5; 

    ph_main = CreatePropellantResource (MAX_MAIN_FUEL); 

    ... 

} 

 

which creates a fuel tank of capacity 10
5
kg. CreatePropellantResource returns a handle to the 

new tank, which is used later to connect thrusters to the tank. 
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CreatePropellantResource accepts two further optional parameters: the initial fuel mass, and 

a fuel efficiency factor eff between 0 and 1. By default, the tank is full, with fuel efficiency 1. If 

an eff < 1 is specified, then the thrust force generated by all connected thrusters is modified 

by 

effFF  

 

Creating thrusters 

To add a new thruster, use the CreateThruster command: 

 
class MyVessel: public VESSEL 

{ 

    ... 

    THRUSTER_HANDLE th_main; 

} 

 

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg) 

{ 

    ... 

    const double MAX_MAIN_THRUST = 2e5; 

    const double VAC_MAIN_ISP = 4200.0; 

    th_main = CreateThruster (_V(0,0,-8), _V(0,0,1), MAX_MAIN_THRUST, 

                              ph_main, VAC_MAIN_ISP); 

    ... 

} 

 

This adds a thruster at position (0,0,-8) with a thrust vector in the positive z-direction, with the 

specified max. thrust and Isp values, and connected to the tank we added earlier. In this 

configuration, the engine efficiency is assumed not to be affected by atmospheric pressure. 

For increased realism, we could introduce pressure-dependency by adding an additional Isp 

value at a reference pressure, and the reference pressure itself: 

 
void MyVessel::clbkSetClassCaps (FILEHANDLE cfg) 

{ 

    ... 

    const double MAX_MAIN_THRUST = 2e5; 

    const double VAC_MAIN_ISP = 4200.0; 

    const double NML_MAIN_ISP = 3500.0; 

    const double P_NML = 101.4e3; 

    th_main = CreateThruster (_V(0,0,-8), _V(0,0,1), MAX_MAIN_THRUST, 

                              ph_main, VAC_MAIN_ISP, NML_MAIN_ISP, P_NML); 

    ... 

} 

 

This reduces the Isp value at sea level to 3500 and performs a linear interpolation to obtain 

the Isp at arbitrary pressures. Note that we could have omitted the last parameter, P_NML, 

because the reference pressure defaults to 101.4 kPa (atmospheric pressure at Earth sea 

level). 

If you descend into a very dense planetary atmosphere, Orbiter will extrapolate the Isp value 

beyond sea level pressure, until Isp drops to zero. At this point, the thruster will stop working 

altogether. 
 

Grouping thrusters 

Although it is possible to address thrusters individually in your module, it is often easier to 

engage them in groups. Groups are also required to activate manual user thruster control via 

the keyboard or joystick, and the automatic navigation modes such as killrot. 

Orbiter has a number of standard thruster groups, such as THGROUP_MAIN, 

THGROUP_RETRO, THGROUP_HOVER, and a full set of attitude thruster groups. For a full 

listing, see VESSEL::CreateThrusterGroup in the Reference Manual. 

It is the responsibility of the vessel designer to make sure that thrusters are grouped in a 

sensible way. For example, whenever the user presses the “+” key on the numerical keypad, 

all thrusters in THGROUP_MAIN will fire. If the thrusters grouped in THGROUP_MAIN 
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behave in an unexpected or non-intuitive way it will be confusing to the user. Furthermore, if 

attitude thrusters are not appropriately grouped, some or all of the navigation modes may fail. 

To group thrusters, use the CreateThrusterGroup command: 

 
void MyVessel::clbkSetClassCaps (FILEHANDLE cfg) 

{ 

    ... 

    thg_main = CreateThrusterGroup (th_main, 2, THGROUP_MAIN); 

    ... 

} 

 

(this assumes that th_main is an array of 2 thruster handles which have been created 

previously). The function returns a handle to the group which can be used later to address the 

group. 

Apart from the standard groups, Orbiter allows to create custom groups by using the 

THGROUP_USER label. Custom groups are not engaged by any of the standard manual or 

automatic control methods, therefore the module must implement a suitable control interface 

for these groups. 

1.5.3 Defining exhaust flames 

When you define a thruster with CreateThruster, Orbiter will not automatically generate 

visuals for the exhaust flames when the thruster is engaged. Sometimes exhaust flames may 

not be appropriate, or, more importantly, you may want to detach the logical thruster definition 

from the physical definition (more about this below). 

 

To create an exhaust flame definition use the AddExhaust function. AddExhaust comes in two 

flavours: 

 UINT AddExhaust (THRUSTER_HANDLE th, double lscale, double wscale, 

SURFHANDLE tex = 0) const 

 UINT AddExhaust (THRUSTER_HANDLE th, double lscale, double wscale, 

const VECTOR3 &pos, const VECTOR3 &dir, SURFHANDLE tex = 0) const 

Both versions require a handle to the logical thruster they are linked to, and two size 

parameters (longitudinal and transversal scaling), but while the first version takes exhaust 

location and direction directly from the thruster definition, the second version gets location 

and direction passed as parameters. 
 

Here is an example demonstrating how you would use the second version of AddExhaust: 

Let’s assume you build a rocket propelled by 4 main engines arranged in a regular square 

pattern. The engines have fixed orientation (no individual gimbal mode) and all thrust force 

vectors are parallel. In addition, the engines produce identical thrust magnitudes at all times. 

Then the 4 engines can be represented by a single logical thruster, whose magnitude is the 

sum of the 4 actual engines, and positioned in the geometric centre. This simplifies the code, 

and is more efficient, because Orbiter does not need to add up 4 individual force vectors. 

However, you still want to see exhaust flames for each of the 4 engines, so you would use the 

second version of AddExhaust to define 4 exhaust flames at the correct positions. 
 

The disadvantage of the second version is that changes in the position or orientation of the 

thruster (for example as a result of SetThrusterPos or SetThrusterDir) are not automatically 

propagated to the exhaust flames. Therefore, if you plan to move or tilt the thrusters, you 

should create them individually and use the first version of AddExhaust. 

 

Custom exhaust textures 

By default, Orbiter uses a standard texture to render exhaust flames. If you want to customise 

the exhaust appearance on a per-thruster basis, you can pass a nonzero surface handle tex 

to both of the AddExhaust versions. To obtain a surface handle for a custom texture, use the 

oapiRegisterExhaustTexture function. 

 
... 
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SURFHANDLE tex = oapiRegisterExhaustTexture (“MyExhaust”); 

AddExhaust (th_main, 10, 2, tex); 

... 

 

The texture file must be stored in DDS format in Orbiter’s default texture directory. Note that 

oapiRegisterExhaustTexture can be safely called multiple times with the same texture. 

1.6 Air-breathing engines 
Orbiter is not limited to rocket engines. Other devices for generating thrust can be imple-
mented as well, from turbojet engines to solar sails or some hypothetical future technology. 
Unlike conventional rocket engines, which are natively supported by the Orbiter core, custom 
designs require a bit more work from the developer. As an example, I will here discuss the 
(tentative) scramjet engine implementation used by the delta-glider. 
 
A ramjet engine is a type of a jet engine which compresses the air for combustion not by any 
mechanical rotating machinery, but simply by “ramming” through the atmosphere, i.e. by us-
ing the aircraft’s velocity in the airstream. This is an efficient way of generating thrust at su-
personic speeds, but does not work at very low speed. (A scramjet is a variant where the air 
is not slowed down to subsonic speeds in the combustor and therefore avoids excessive 
heating at extreme velocities). 
 
A typical ramjet engine is composed of 3 sections: 

 the inlet diffuser where the air is isentropically decelerated, with pressure increasing from 

freestream pressure p  to pd, and temperature increasing from freestream temperature T  
to Td. 

 the combustion chamber, where the air-fuel mixture is burned at constant pressure pb = 

pd, and temperature increases from Td to Tb. 

 the exhaust nozzle, where the hot, high-pressure gas is expanded isentropically, with 

pressure decreasing from pb to p , and temperature decreasing from Tb to Te. 
 
The temperatures and pressures in the three parts of the engine (diffuser, burner and 
exhaust) can be calculated in the following form: 

pp
p

p
TT

ppTTT

T

T
ppMTT

e

b

e
be

dbdbb

d
dd

/)1(

0

)1/(

2

),max(

2

1
1

 

where M  is the freestream Mach number,  is the ratio of specific heats, and Tb0 is the burner 
temperature limit, an engine design parameter defined by the heat resistance of the 
combustion chamber material. Note that if at high velocities Td > Tb0, the engine will start to 

overheat purely from the isentropic compression in the diffuser, without any combustion 
taking place! The figure below shows an example for the temperature distribution in the 
engine compartments as a function of freestream Mach number. The example assumes a 
burner temperature limit of Tb0 = 3200 K. In this case, the limiting velocity is v = Mach 8.2. 
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To calculate the thrust generated by a scramjet, we start from the fundamental thrust equation 
for jet propulsion, 

eeaefa AppvmvmmF )()(   

where am  and 
fm  are the air and fuel mass rates, respectively (using the common notation 

dtdxx / ), ev  and v  are the exhaust and freestream velocities, and eA  is the exhaust 

cross section.  

 

Because of the assumption pe = p  the last term vanishes. The specific thrust is then given by 

vvD
m

F
e

a

1


 

where af mmD  /  is the fuel-to-air ratio. 

 

The amount of fuel burned in the combustion chamber must be adjusted so that the burner 

temperature limit is not exceeded. This leads to the following expression for D: 

bp

db

TcQ

TT
D

/
 

where Q is a fuel-specific heating value and cp is the specific heat at constant pressure, given 

by 

1

R
c p  

The mass flow of air collected by the engine is a function of air intake cross section Ai, 

freestream density  and freestream velocity v : 

ia Avm  

where v  can be expressed in terms of the freestream Mach number: 

RTMv  

From the above equations for D and am  we can calculate the fuel rate fm  required to 

achieve combustion temperature Tb. 

 

The final quantity required to calculate F is the exhaust velocity ev . This can be obtained from 

the energy balance 

2/2

eepbp vTcTc  

We now have all the components to calculate the thrust F generated by the engine. The 

graphs below show various scramjet parameters for velocities in the range from Mach 0 to  

Mach 10 at an altitude of 10 km (assuming  = 0.43 kg/m
3 and T  = 225 K). The DG engine 

design parameters in this example are Q = 4.5  10
7
 J/kg, Ai = 0.6 m

2, and Tb0 = 3200 K. 
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1.7 Rendering re-entry flames 
To visualise the friction heat dissipation during atmospheric reentry, Orbiter supports the 

rendering of “re-entry flames”. To calculate the amount of heat generated per surface area 

and time (and to scale the exhaust flames) Orbiter uses this formula: 

3

2

1
vP  

where  is the atmospheric density, and v is the vessel’s airspeed. Orbiter renders exhaust 

flames if P > P0 where P0 is a user defined limit. The size and opacity of the reentry flames is 

scaled by 

0

0

5
,1min

P

PP
s  

In addition, the user can specify scaling factors for length and width of the reentry texture, as 

well as the texture itself. 
 

Orbiter by default uses its own texture to render reentry flames. If you want to change the 

texture globally, you need to replace reentry.dds in the Textures subdirectory. If you only want 

to modify the texture for a specific vessel class, you need to load a custom texture, and then 

set your render options: 

 
void MyVessel::clbkSetClassCaps (FILEHANDLE cfg) 

{ 

  ... 

  SURFHANDLE tex = oapiRegisterReentryTexture (“MyReentryFlame”); 

  SetReentryTexture (tex, my_plimit, my_lscale, my_wscale); 

  ... 

} 

 

Reentry textures require a specific layout. They consist of an elongated part in the left half of 

the texture map, and a circular part in the upper right corner. The lower right corner is not 

currently used. This is how the alpha channel of the default reentry.dds looks like: 
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Note that Orbiter automatically adds a colour component to the texture depending on the 

value of s, from red to white. If this is sufficient for your custom reentry flame, leave the RGB 

channels of the texture pure white. Otherwise you may want to experiment with additional 

texture colours. 
 

If you want to suppress rendering of reentry flames for your vessel altogether, use 

 
... 

SetReentryTexture (NULL); 

... 

1.8 Adding particle streams for exhaust and reentry effects 
Orbiter supports particle streams for rendering contrails, exhaust gases, reentry plasma trails 
etc. Particle streams consist of a series of textured “billboard” objects which always face the 
camera. The streams can be customised with a set of parameters and allow the simulation of 
a variety of effects. 
 
The PARTICLESTREAMSPEC structure 
At creation, the particle stream can be customised by passing a PARTICLESTREAMSPEC 
structure to VESSEL::AddExhaustStream and VESSEL::AddReentryStream. The structure is 
defined as follows: 
 
typedef struct { 

 DWORD flags; 

 double srcsize; 

 double srcrate; 

 double v0; 

 double srcspread; 

 double lifetime; 

 double growthrate; 

 double atmslowdown; 

 enum LTYPE { EMISSIVE, DIFFUSE } ltype; 

 enum LEVELMAP { LVL_FLAT, LVL_LIN, LVL_SQRT, LVL_PLIN, LVL_PSQRT } 

           levelmap; 

 double lmin, lmax; 

 enum ATMSMAP { ATM_FLAT, ATM_PLIN } atmsmap; 

 double amin, amax; 

 SURFHANDLE tex; 

} PARTICLESTREAMSPEC; 

 

srcrate 

The (average) rate at which particles are created by the emission source [Hz]. 

v0 

The (average) emission velocity of particles by the emission source [m/s] 

ltype 

Defines the material lighting method when rendering the particles. 

EMISSIVE: Particles are rendered emissive (self-radiating). This is appropriate for 

streams representing ionized exhaust gases, or plasma streams during 
reentry. 
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DIFFUSE: Particles are rendered diffuse (diffuse reflection of external light sources). 

This is appropriate for smoke and vapour trails. 

levelmap 

Defines the mapping between the level parameter L (e.g. thruster level) and the alpha 

value  (opacity) of the generated particle. The higher the alpha value, the more solid 
the stream will appear. This parameter is only used for exhaust streams. The following 
options are available: 

LVL_FLAT: constant mapping, i.e. alpha is independent of th reference level:  = 

lmin 

LVL_LIN: linear mapping:  = L 

LVL_SQRT: square root mapping: L  

LVL_PLIN: linear mapping in sub-range: 

lmax1

lmaxlmin
lminlmax

lmin

lmin0

if L

Lif
L

Lif

 

LVL_PSQRT: square root mapping in sub-range: 

lmax1

lmaxlmin
lminlmax

lmin

lmin0

if L

Lif
L

Lif

 

lmin, lmax 

Defines min and max levels for alpha mapping. Only used if levelmap is CONST, PLIN 

or PSQRT (see above). For CONST, only lmin is used. For PLIN and PSQRT, lmin < 

lmax is required. Note that lmin < 0 is valid – this will cause the stream to produce 

particles even when the reference level is 0. Likewise, lmax > 1 is valid – this will 

cause the alpha value of the particles to remain < 1 even at reference level 1. 

atmsmap 

Defines the mapping between atmospheric parameters and the alpha value  (opacity) 
of the generated particle. The following options are available: 

ATM_FLAT: constant mapping, i.e. alpha is independent of atmospheric 

parameters:  = amin 

ATM_PLIN: linear mapping of ambient atmospheric parameter x: 

amax1

amaxamin
aminamax

amin

amin0

if x

xif
x

xif

 

ATM_PLOG: logarithmic mapping of ambient atmospheric parameter x: 

amax1

amaxamin
aminamaxln

aminln

amin0

if x

xif
x

xif

 

For exhaust streams, atmospheric parameter x is the ambient atmospheric density, . 

For reentry streams, x is defined as 3

2

1 vx  (v: airspeed) which is proportional to the 

friction power in turbulent airflow (omitting geometry-related parameters). 

amin, amax 

Defines min and max atmospheric parameter (ambient density or friction power) for 

alpha mapping. amin < amax is required. For PLIN, amin < 0 is admissible to enable 

particle generation at zero density. For PLOG, amin > 0 is required.  
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Figure 1: The particle alpha value as a function of reference level (left) and atmospheric 
parameter (right) for different ‘levelmap’ and ‘atmsmap’ modes. 

1.9 Atmospheric flight model 

1.9.1 Lift and drag theory 

Drag is a force acting on the vessel in the direction of the freestream airflow. It is composed 
from several components: 
1. The skin friction drag caused by the boundary layer surrounding the airfoil. 
2. The pressure drag caused by separation of flow from the surface. 
3. The wave drag at supersonic velocities. 
4. Induced drag, caused by airflow around the wingtip (finite wing) from the lower to the 

upper surface. 
The combination of components 1-3 is defined as profile drag or parasite drag. 
 
Lift is an upward force (perpendicular to the airflow) caused by the shape of the airfoil and its 
orientation to the airflow. 
 
Drag D and lift L of an airfoil are expressed by the drag and lift coefficients cD and cL, with 

Sq

L
c

Sq

D
c LD ,  

where 2
2

1 Vq  is the freestream dynamic pressure, and S is the wing area. Generally, cD 

and cL, will be functions of the angle of attack, the Mach number, and the Reynolds number. 
We now split cD in the components of profile and induced drag. Induced drag is a result of lift 
and can be expressed as a function of cL: 

eA

c
cc L

eDD

2

,  

where e is a span efficiency factor, and A is the wing aspect ratio, defined as b2
/S with wing 

span b. 
The profile component cD,e will change with angle of attack. We assume that cD,e can be 
expressed as the combination of a zero-lift component cD,0 and a component depending on cL: 

2

0,, LDeD rccc  

Here, r is a form constant which is usually determined empirically. We can now incorporate 
the lift-dependent term of cD,e into the factor e, to give 

A

c
cc L

DD

2

0,  

where )1/( eAre  is the Oswald efficiency factor. 

When implementing an airfoil in Orbiter, the user must supply a function which calculates cL 
and cD for a given set of parameters (angle of attack, Mach number and Reynolds number). 
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Orbiter provides a helper function (oapiGetInducedDrag) to calculate the induced drag 
component with the above formula. 

1.9.2 Lift and drag in transonic and supersonic flight 

(to be completed) 

1.9.3 Angular moments and vessel stability 

(to be completed) 

1.9.4 Angular drag 

Similar to (linear) drag which produces a force acting against a vessel’s airspeed vector, a 

rotating vessel will experience angular drag which acts against the angular velocity, thus 

slowing the rotation. Orbiter uses the following formulae to calculate angular damping: 

zzyz

yyyy

xxyx

cSqdM

cSqdM

cSqdM

,

,

,

 

where 2

02
1 )( VVq  is a modified dynamic pressure which ensures that angular drag 

also occurs at low airspeeds (Orbiter currently uses a fixed V0 = 30 m/s). Sy is the vessel’s 

cross section projected along the vertical (y) axis, used as a reference area. Sy is the y-

component of the vector passed to VESSEL::SetCrossSections(). c ,x, c ,y and c ,z are the 

drag coefficients for rotations around the x, y, and z vessel axes as defined by 

VESSEL::SetRotDrag(). x, y and z are the angular velocities around the vessel axes, and 

dMx, dMy and dMz are the changes in torque due to damping. 

Angular drag is determined by the vessel shape. Developers can adjust the effect of angular 

damping in the atmosphere by adjusting the coefficients passed to VESSEL::SetRotDrag(). 

Higher coefficients make a vessel less responsive to control input, and reduce oscillations 

around equilibrium orientation. 

1.9.5 API interface for airfoil definitions 

To define the lift and drag characteristics for a spacecraft in the DLL module, use the 
VESSEL::CreateAirfoil method. An airfoil is defined as a cross section through a wing. In 
Orbiter, we use the term airfoil for any components of the vessel which produce lift and/or 
drag forces. Multiple airfoils can be defined for a single vessel (for example for the left and 
right wing, the body, the horizontal and vertical stabilizers in the tail, etc.). It is usually best to 
keep the number of airfoils low to keep the flight model predictable and to improve simulation 
performance. 
 
Orbiter distinguishes two different types of airfoil orientations: airfoils which create vertical lift 
(e.g. wings) and airfoils which create horizontal “lift”, e.g. vertical stabilisers. Even vessels 
without any wings or other aerodynamic surfaces should define at least one horizontal and 
one vertical airfoil to define their atmospheric drag behaviour (even blunt objects such as 
reentry capsules which have no similarity to an aircraft produce drag and lift forces). 
 
When calling the CreateAirfoil method, the user must provide 
 

 basic airfoil parameters (orientation, wing area, chord length and wing aspect ratio). 

 the force attack point (i.e. the point on the vessel on which the lift and drag forces for this 
airfoil act). This influences the angular moments generated by the forces. 

 a callback function which calculates the lift, drag and moment coefficients of the airfoil as 

a function of angle of attack , Mach number M and Reynolds number Re. 
 
The coefficients decide how much lift and drag is generated by the airfoil. The lift and drag 
forces (L and D) are obtained from the moments (cL and cD) by 

SqMcMD

SqMcML

D

L

Re),,(Re),,(

Re),,(Re),,(
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with  freestream dynamic pressure 221 vq , and reference area S. The function which 

calculates cL and cD must be able to handle arbitrary angles of attack (-  to ) and very high 
Mach numbers which may occur during LEO insertion and atmospheric entry (orbital velocity 
for a low Earth orbit is equivalent to M > 20!) 
 

The Reynolds number is a parameter dependent on atmospheric viscosity : 

vc
Re  

with freestream airspeed v and density . In the current Orbiter version,  is assumed 

constant (  = 1.6894 10
-5

 kg m
-1

 s
-1

). In future versions,  will depend on the atmospheric 
composition and temperature. 
 
The direction of the lift force vector is defined in Orbiter as 

22

22

/),0,(ˆ

/),,0(ˆ

zxxz

zyyz

vvvvL

vvvvL
 

for vertical and horizontal lift components, respectively, where (vx,vy,vz) is the freestream 

airflow vector in vessel coordinates. This means that L̂  is rotated 90° counter-clockwise 

against the projection of the airflow vector into the yz-plane, and L̂  is rotated 90° counter-

clockwise against the projection of the airflow vector into the xz-plane. Since  and  are 
defined as 

zx

zy

vv

vv

/arctan

/arctan
 

we find the following relations between  or  and the direction of lift: 

lift direction  lift direction 

0° up (+y)  0° right (+x) 

90° forward (+z)  90° forward (+z) 

180° down (-y)  180° left (-x) 

270° backward (-z)  270° backward (-z) 

 
This convention must be taken into account when defining the lift coefficient profile. For 
example, the cL profile for a vertical stabiliser with symmetric airfoil should be positive for 0° ≤ 

 ≤ 90° and 180° ≤  ≤ 270°, and negative for 90° ≤  ≤ 180° and 270° ≤  ≤ 360°. The lift 

profile in this case may therefore resemble sin 2 . For asymmetric airfoils the lift profile will 
look more complicated (for example, the zero-lift angle will usually not be exactly 0°). 

1.10 Defining an animation sequence 
Animation sequences can be used to simulate movable parts of a vessel. Examples are the 
deployment of landing gear, cargo door operation, or animation of airfoils. 
Animations are implemented in vessel modules, using the VESSEL interface class. 
Orbiter allows 3 types of animation: rotation, translation and scaling. More complex can be 
built from these basic operations. 

1.10.1 Semi-automatic animation 

Mesh requirements: 
Animations are performed by transforming mesh groups. Therefore, all parts of the mesh 
participating in an animation must be defined in separate groups. Multiple groups can 
participate in a single transformation. 
 
Defining an animation sequence: 
Create a member function for MyVessel to define animation sequences, and call it from the 
constructor, e.g. 
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MyVessel::MyVessel (OBJHANDLE hObj, int fmodel) 

: VESSEL2 (hObj, fmodel) 

{ 

  DefineAnimations(); 

} 

 
In the body of DefineAnimations(), you now have to specify how the animation should be 
performed. Here is an example for a nose wheel animation: 
 
void MyVessel::DefineAnimations() 

{ 

  static UINT groups[4] = {5,6,10,11}; // participating groups 

 

  static MGROUP_ROTATE nosewheel ( 

    0,                          // mesh index 

    groups, 4,                  // group list and # groups 

    _V(0,-1.0,8.5),             // rotation reference point 

    _V(1,0,0),                  // rotation axis 

    (float)(0.5*PI)             // angular rotation range 

  ); 

 

  anim_gear = CreateAnimation (0.0); 

  AddAnimationComponent (anim_gear, 0, 1, &nosewheel); 

} 

 
You first need to determine which mesh groups take part in the animation. In this case, the 
nose wheel consists of the four groups 5, 6, 10 and 11, and these are listed in the “groups” 
array. 
 
Next, you must define the parameters of the rotation. This is done by creating a 
MGROUP_ROTATE instance. Besides the mesh index and group indices, this also requires 
the rotation reference point (i.e. the point around which the mesh groups are rotated), the axis 
of rotation, and the rotation range. 
 
A new animation is created by calling CreateAnimation. The parameter passed to 
CreateAnimation defines the animation state in which the mesh groups are stored in the 
mesh. The return value identifies the animation. 
 
Finally, the rotation of the nose wheel is added to the animation by calling 
AddAnimationComponent. The parameter are the animation identifier, the cutoff states of the 
component, and the transformation. The cutoff states define over which part of the animation 
the component transformation is applied. In this example, the cutoff states are 0 and 1, that is, 
the rotation of the nose wheel occurs over the full duration of the animation. 
 
Now let’s consider a slightly more complicated example, where the animation consists of two 
components: (a) opening the wheel well cover, and (b) deploying the gear. 
 
void MyVessel::DefineAnimations() 

{ 

  static UINT cover_groups[2] = {0,1}; 

  static MGROUP_ROTATE cover (0, cover_groups, 2, 

    _V(-0.5,-1.5,7), _V(0,0,1), (float)(0.45*PI)); 

 

  static UINT wheel_groups[4] = {5,6,10,11}; 

  static MGROUP_ROTATE nosewheel (0, wheel_groups, 4, 

    _V(0,-1.0,8.5), _V(1,0,0), (float)(0.5*PI)); 

 

  anim_gear = CreateAnimation (0.0); 

  AddAnimationComponent (anim_gear, 0, 0.5, &cover); 

  AddAnimationComponent (anim_gear, 0.4, 1, &nosewheel); 

} 
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The rotations for the gear well cover and the landing gear are defined by two separate 
MGROUP_ROTATE variables. After creating the animation, both rotations are added as 
components. The cover is opened during the first part of the animation (between states 0 and 
0.5) while the gear is deployed in the final part (between states 0.4 and 1). Note that there is a 
small overlap (between 0.4 and 0.5), which means that the gear begins to rotate before the 
cover is fully opened. 
When the animation is played backward to retract the gear, the components are rotated in the 
inverse order: the gear is retracted first, then the cover is closed. 
 
Animations can be arranged in a hierarchical order, so that a parent animation can transform 
mesh groups which are themselves animations. Consider for example the wheel on a landing 
gear which is spinning while the gear is being retracted. In this case, the gear animation is 
defined as a rotation around the gear hinge point, while the wheel animation is a rotation 
around the wheel axis. The wheel animation must be defined as a child of the gear animation, 
because the wheel is rotated together with the gear. 
 
void MyVessel::DefineAnimations() 

{ 

  ANIMATIONCOMPONENT_HANDLE parent; 

 

  static UINT gear_groups[2] = {5,6}; 

  static MGROUP_ROTATE gear (0, gear_groups, 2, 

    _V(0,-1.0,8.5), _V(1,0,0), (float)(0.45*PI)); 

 

  static UINT wheel_groups[2] = {10,11}; 

  wheel = new MGROUP_ROTATE (0, wheel_groups, 2, 

    _V(0,-1.0,6.5), _V(1,0,0), (float)(2*PI)); 

 

  anim_gear = CreateAnimation (0.0); 

  parent = AddAnimationComponent (anim_gear, 0, 1, &gear); 

 

  anim_wheel = CreateAnimation (0.0); 

  AddAnimationComponent (anim_wheel, 0, 1, wheel, parent); 

} 

 
The gear and wheel rotations are defined by the MGROUP_ROTATE variables “gear” and 
“wheel”. Note that in this case “wheel” is not defined static, since reference point and axis will 
be modified by the parent. Therefore, “wheel” must be defined as a data member of the 
MyVessel class. Since “wheel” is allocated dynamically, don’t forget to de-allocate it with 
 
MyVessel::~MyVessel() 

{ 

  ... 

  delete wheel; 

  ... 

} 

 
The return value of the AddAnimationComponent() call for the gear animation is a handle 
which identifies the transformation. We use this value for the optional parent parameter when 
defining the animation component for the wheel animation. This makes the wheel animation a 
child of the gear animation. 
 
A complex example for hierarchical animations can be found in the RMS arm animation of 
Space Shuttle Atlantis in Orbitersdk\samples\Atlantis\Atlantis.cpp. 
 
Apart from rotations, mesh groups can also be transformed by translating and scaling. The 
corresponding MGROUP_TRANSFORM derivates are MGROUP_TRANSLATE and 
MGROUP_SCALE: 
 
  MGROUP_TRANSLATE t1 (0, groups, 2, _V(0,10,5)); 

  MGROUP_SCALE t2 (0, groups, 2, _V(5,0,2), _V(2,2,2)); 
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In both cases, the first three parameters are the same as for MGROUP_ROTATE (mesh, 
index, group list and number of groups). For MGROUP_TRANSLATE, the last parameter 
defines the translation vector. For MGROUP_SCALE, the last two parameters define the 
scale origin, and the scale factors in the three axes. 
 
Performing the animation: 
To animate the nose wheel now, we need to manipulate the animation sequence state by 
calling SetAnimation() with a value between 0 (fully retracted) and 1 (fully deployed). This is 
typically done in the Timestep() member function, e.g. 
 
void MyVessel::Timestep (double simt) 

{ 

  if (gear_status == CLOSING || gear_status == OPENING) { 

    double da = oapiGetSimStep() * gear_speed; 

    if (gear_status == CLOSING) { 

      if (gear_proc > 0.0) 

        gear_proc = max (0.0, gear_proc-da); 

      else 

        gear_status = CLOSED; 

    } else  { // door opening 

      if (gear_proc < 1.0) 

        gear_proc = min (1.0, gear_proc+da); 

      else 

        gear_status = OPEN; 

    } 

    SetAnimation (anim_gear, gear_proc); 

  } 

} 

 
Here, gear_status is a flag defining the current operation mode (CLOSING, OPENING, 
CLOSED, OPEN). This will typically be set by user interaction, e.g. by pressing a keyboard 
button. If the animation is in progress (OPENING or CLOSING), we determine the rotation 
step (da) as a function of the current frame interval (oapiGetTimeStep()). The value of 
gear_speed defines how fast the gear is deployed. 
Next, we update the deployment state (gear_proc), and check whether the sequence is 

complete ( 0 if closing, or 1 if opening). Finally, SetAnimation() is called to perform the 
animation. 
 
The DeltaGlider sample module (Orbitersdk\samples\DeltaGlider) contains a complete 
example for an animation implementation. 

1.10.2 Manual animation 

As an alternative to the (semi-)automatic animation concept described in the previous section, 
Orbiter also allows manual animation. This can be more versatile, but requires more effort 
from the module developer, because the complete animation sequence must be implemented 
explicitly. 
A manual animation sequence is created by the functions 

VESSEL::RegisterAnimation() and VESSEL::UnregisterAnimation(). A call to 

RegisterAnimation causes Orbiter to call the module’s ovcAnimate callback function at 

each frame, provided the vessel’s visual exists. UnregisterAnimation cancels the 

request. 

Note that RegisterAnimation/UnregisterAnimation pairs can be nested. Each call to 

RegisterAnimation increments a reference counter, each call to 

UnregisterAnimation decrements the counter. Orbiter will call ovcAnimate as long as 

the counter is > 0. 

It is up to the module to implement its animations in the body of ovcAnimate. Typically this 

will involve calls to MeshgroupTransform(), to rotate, translate or scale mesh groups as a 

function of the last simulation time step. Note that ovcAnimate is called only once per frame, 

even if more than one RegisterAnimation request has been logged. The module must 

therefore decide which animations need to be processed in ovcAnimate. 
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UnregisterAnimation should never be called from inside ovcAnimate, since 

ovcAnimate is only called if the visual exists. This could cause the unregister request to be 

lost. It is better to test for animation termination in ovcTimestep. 

1.11 Designing instrument panels 
Instrument panels are a good way to give an individual feel to a spacecraft class and allow 
the user to monitor flight parameters and control specific aspects of the vessel via the mouse, 
without the need to remember a large number of keyboard commands. 
 
There are two ways to define a cockpit interior: you can build one (or several) flat two-dimen-
sional panels as bitmaps which are overlayed on top of the three-dimensional scenery of the 
simulation window (denoted as panels below), or you can construct a full three-dimensional 
mesh representation of the cockpit (denoted as virtual cockpit, or VC below). A vessel can 
implement both panels and virtual cockpits. The user can switch between them (and the ge-
neric cockpit view comprising two MFD displays and HUD) by pressing F8. 
 
In this section we will discuss the steps required to define 2-D panels in the vessel module. 
Section 1.12 will deal with virtual cockpits. 

1.11.1 Defining a panel 

You will first need to create a bitmap which represents the 2-D instrument panel. You can use 
any paint tool capable of generating Windows BMP files. The panel can be saved in 8-bit or 
24-bit mode, but 8-bit mode is strongly recommended to reduce the size of the resulting 
vessel module, and improve simulation performance. 
 

 

Figure 2: The DG main panel bitmap. 

Some thought should be given to the size of the panel bitmap. Remember that users will run 
Orbiter at different screen resolutions and window sizes. If the bitmap is made very large, a lot 
of panning will be required to bring different parts of the panel into view at low resolutions. If 
the bitmap is very small, it will cover only a small area of the screen at high resolutions. It is 
probably best to design panels for medium screen resolutions (between 1024x768 and 
1280x960 pixels). Users with very low or very high screen resolutions will be able to adjust 
the panel size by using Orbiter's panel rescaling option. 
 
You should also consider whether the panel is to cover the whole screen, or only part of it. 
The main panel should usually obstruct only part of the 3-D scenery, but side panels could 
take up the whole simulation window. 
 
The main panel should typically also provide space for MFDs (multifunctional displays), which 
are the primary method to provide flight data to the pilot. Most common is a layout with two 
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MFDs, but fewer or more can be defined as well. The size of the MFD displays should be 
chosen so that they are easily readable over a 'typical' range of screen resolutions. 
 
You can define more than one panel for a vessel. For example, you may define a main panel 
which is visible in the lower half of the screen when the pilot looks forward, an overhead 
panel, side panels, etc. The user can switch between the different panels with Ctrl+cursor 
keys. We will discuss later how to define the connectivity between panels. To start with, let's 
look at the definition of a single main panel. 
 
Once you have created the panel BMP file, you should add it as a bitmap resource to your 
vessel module project. Now you are ready to write the code to support the panel. To do so, 
you need to overload the clbkLoadPanel method of the VESSEL2 class: 
 
bool MyVessel::clbkLoadPanel (int id) 

{ 

  ... 

} 

 
Here we assume that MyVessel is a class derived from VESSEL2 (see Section 1.2 on how to 
create vessel instances). id is a panel identifier which Orbiter will provide to let your function 
know which panel is required. If only a single main panel is defined, id will always be 0. If you 
define more than one panel, you should examine this parameter to decide which panel to 
load. 
 
Orbiter will call your clbkLoadPanel method whenever it needs to load an instrument panel. 
This happens if 

 the user switches to instrument panel view from another view mode by pressing F8. 

 the user switches between panels with Ctrl+cursor keys. 

 the user switches from an external view to a cockpit view. 

 the user switches to a different spacecraft with F3. 
 
In the body of clbkLoadPanel, we need to load the panel bitmap and pass it to Orbiter via the 
oapiRegisterPanelBackground function: 
 
bool MyVessel::clbkLoadPanel (int id) 

{ 

  HBITMAP hBmp = LoadBitmap (hDLL, MAKEINTRESOURCE(IDB_PANEL)); 

  oapiRegisterPanelBackground (hBmp); 

  return true; 

} 

 
Here, hDLL is a module instance handle passed to the InitModule callback function of your 
module, and IDB_PANEL is assumed to be the numerical resource identifier of the panel 
bitmap. The return value of clbkLoadPanel should normally be true. false signifies an error, 
e.g. failure to load the panel bitmap. 
 
oapiRegisterPanelBackground has an additional optional parameter which defines how the 
panel is connected to the edges of the simulation window, and how it can be scrolled across 
the screen with the cursor keys. A common choice for a main window is to connect it to the 
lower edge of the window, and allow it to be scrolled downward. This can be accomplished as 
follows: 
 
  oapiRegisterPanelBackground (hBmp, 

      PANEL_ATTACH_BOTTOM|PANEL_MOVEOUT_BOTTOM); 

 
(This is in fact the default setting, so you only need to provide this parameter if you need to 
define a different behaviour.) For a full list of supported attachment and scroll parameters, see 
the oapiRegisterPanelBackground description in the Reference Manual. 
 
oapiRegisterPanelBackground has a further optional parameter to define a transparent col-
our. Any part of the bitmap containing that colour will be transparent in the render window. 
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This allows to implement irregular panel shapes such as windows which provide a view of the 
3-D scene though the panel. 
 
The transparent colour is given in 0xRRGGBB format. Note that if Orbiter is run in 16-bit 
mode, not all colours can be represented. For that reason, it is recommended to use either 
black (0x000000) or white (0xFFFFFF) as the transparent colour which are always available 
in 16-bit mode, to avoid problems. In any case, you should always check that your panel ap-
pears correctly in both 16 and 32 bit modes before publishing your addon. 
 
So the final version of our main panel loading call looks like this, where we allow the panel to 
be scrolled out at the bottom, and use white as the transparent colour: 
 
  oapiRegisterPanelBackground (hBmp, 

      PANEL_ATTACH_BOTTOM|PANEL_MOVEOUT_BOTTOM, 0xFFFFFF); 

 
At this point, you can try to compile your module and test the panel in Orbiter. You should be 
able to make the panel visible by pressing F8 when you are in the cockpit of an instance of 
your vessel class, and scroll it up and down with the cursor keys. 

1.11.2 Defining active panel areas 

Now we can start to do something interesting with our new panel. We need to activate areas 
of the panel. Active areas can do two things: 

 They can be repainted from within the code, for example to dynamically update an 
instrument display, and/or 

 they can register mouse button events to allow the user to interact with the panel. 
 
A panel area is activated with the oapiRegisterPanelArea function. This must be called in your 
vessel's clbkLoadPanel method, after the panel has been loaded with oapiRegisterPanel-
Background. Let's define an area that contains a button which the user can press: 
 
  oapiRegisterPanelArea (AID_BUTTON, _R(10,10,30,20), 

      PANEL_REDRAW_MOUSE, PANEL_MOUSE_LBDOWN, PANEL_MAP_BACKGROUND); 

 
The first parameter, AID_BUTTON, is a value that uniquely identifies the area across all pan-
els. The next parameter defines a rectangular area in the panel given by the left, top, right 
and bottom edges (measured from the top left corner of the panel bitmap). 
The next parameter, PANEL_REDRAW_MOUSE, specifies that the area must be redrawn 
whenever a mouse event occurs inside the area. Other areas may need to be redrawn at 
each frame, by explicitly requesting a redraw, or not at all. 
PANEL_MOUSE_LBDOWN requests a notification whenever the user presses the left mouse 
button inside the area. You can also request mouse button releases, or continuous notifica-
tions as long as a button is pressed. A panel area defined with PANEL_MOUSE_IGNORE will 
never generate any mouse events. 
PANEL_MAP_BACKGROUND requests the area background (i.e. the portion of the panel 
bitmap under the area) to be passed to the redraw function. Instead, you could request the 
current status of the area, or an un-initialised bitmap to be passed to the redraw function. See 
the documentation to oapiRegisterPanelArea in the Reference Manual for more details. 
 
You can define more panel areas to turn your panel into a useful interface, but avoid overlap-
ping areas. 
 
Next, we need to implement the callback functions Orbiter will call to allow the module to re-
spond to redraw and mouse events generated by the active areas. 

1.11.3 The mouse event handler 

To intercept mouse events generated by a panel you must overload the clbkPanel-
MouseEvent method of the VESSEL2 class: 
 
bool MyVessel::clbkPanelMouseEvent (int id, int event, int mx, int my) 
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{ 

  ... 

} 

 
where id is the identifier of the panel area for which the event was generated (e.g. 
AID_BUTTON in our example), event specifies the mouse event type, and mx,my are the 
panel coordinates at which the event occurred. 
 
Important: A button-up event is always generated for the instrument which produced the pre-
ceding button-down event, even if the mouse has been dragged out of the panel area in the 
mean time. 
 
The following mouse events are available: 
PANEL_MOUSE_LBDOWN Left mouse button pressed down. 
PANEL_MOUSE_RBDOWN Right mouse button pressed down. 
PANEL_MOUSE_LBUP Left mouse button released. 
PANEL_MOUSE_RBUP Right mouse button released. 
PANEL_MOUSE_LBPRESSED Left mouse button down 
PANEL_MOUSE_RBPRESSED Right mouse button down. 
 

The PANEL_MOUSE_LBPRESSED and PANEL_MOUSE_RBPRESSED events are sent 
continuously while the buttons are held down. This allows the implementation of mouse-
dragging event, for example to move sliders with the mouse. 
 
Inside clbkPanelMouseEvent, your code must check the area id and perform the appropriate 
actions: 
 
bool MyVessel::clbkPanelMouseEvent (int id, int event, int mx, int my) 

{ 

  switch (id) { 

  case AID_BUTTON: 

    DoProcessButtonPress (...); 

    return true; 

  case ...  // place response to other areas here 
  } 

  return false; 

} 

 
Here, DoProcesButtonPress is assumed to be a locally defined method which performs the 
required action. 
The return value is currently only used for areas which use the PANEL_REDRAW_MOUSE 
flag. In this case, returning true will trigger a redraw event, while returning false will not. For 
efficiency, return true only if the area needs to be redrawn as a consequence of the mouse 
event. 
 
The mx and my parameters define the area coordinates (0,0 is the top left corner of the area) 
at which the mouse event occurred. This is sometimes useful to fine-tune the response. For 
example, let's assume that the button defined in the example is actually a switch which can 
be flipped left or right. Then we could do this: 
 
  ... 

  case AID_BUTTON: 

    if (mx < 10) 

      DoProcessFlipLeft (...); 

    else 

      DoProcessFlipRight (...); 

    return true; 

  ... 
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1.11.4 The redraw event handler 

To provide a visual cue of the button press, we may want to redraw the area  (e.g. to simulate 
a control lamp lighting up). Other areas representing gauges and displays may need to be re-
drawn continuously without any mouse events. To respond to redraw requests, we need to 
overload the clbkPanelRedrawEvent method of the VESSEL2 class: 
 
bool MyVessel::clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf) 

{ 

  ... 

} 

 
As with the mouse event handler, your implementation of clbkPanelRedrawEvent should ex-
amine the area id (and the redraw event, if required), and redraw the corresponding area as 
required. 
 
surf is a handle to the paint surface for the area in which all repainting takes place. The con-
tents of the surface passed to the callback function depend on the parameters specified dur-
ing the definition of the area: 
 
PANEL_MAP_NONE surf is undefined 
PANEL_MAP_BACKGROUND surf contains area background 
PANEL_MAP_CURRENT surf contains current area contents 
PANEL_MAP_BGONREQUEST surf is undefined, but area background can be obtained on 

request 
 
PANEL_MAP_NONE is the most efficient option if the whole area needs to be redrawn at 
each redraw event. PANEL_MAP_BACKGROUND is least efficient, because it involves the 
most internal surface copy processes. If you need the background bitmap, but your area 
doesn't need to be redrawn for each redraw request generated (for example, if you have de-
fined a gauge, to be redrawn at each simulation frame, but often the contents don't change 
between subsequent frames), it is more efficient to use the PANEL_MAP_BGONREQUEST 
flag, and obtaining the background bitmap explicitly with a call to oapiBltPanelAreaBack-
ground whenever the area actually needs to be redrawn (see documentation to oapiBltPanel-
AreaBackground in the Reference Manual for more details). 
 
Our redraw function might look like this: 
 
bool MyVessel::clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf) 

{ 

  switch (id) { 

  case AID_BUTTON: 

    if (button_pressed) 

      oapiBlt (surf, buttonSurf, 0, 0, 0, 0, 20, 10); 

    else 

      oapiBlt (surf, buttonSurf, 0, 0, 0, 10, 20, 10); 

    return true; 

  case ... // imprement redraw methods for other areas 
  } 

  return false; 

} 

 
Here, buttonSurf is assumed to be the surface handle to a bitmap which contains images of 
the button for both the pressed and the released state. (You can store this bitmap as a mod-
ule resource and obtain a surface handle to it with the oapiCreateSurface method.) oapiBlt 
copies the relevant part of the bitmap into the area's surface (the button_pressed flag could 
for example have been set in the mouse event handler). 
 
When more complex redrawing is required, you can obtain a device context handle to the 
surface with oapiGetDC and then use standard Windows GDI methods to paint in the surface. 
(see Windows API documentation). Don't forget to release the device context with oapiRe-
leaseDC at the end. 
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The return value of clbkPanelRedrawEvent signals to Orbiter if the contents of the area have 
been redrawn. Return true only if you did modify the surface, false otherwise. 

1.11.5 Defining panel MFDs 

MFD (multifunctional displays) are probably the most important components of your panel. 
They are defined differently to other panel areas, because some of the redraw events are 
processed directly by Orbiter. 
 
MFDs consist of a square display area (representing a colour CRT or LCD display) and rows 
of control buttons to the left and right. The number of buttons can be defined individually. 
 
You reserve a panel area for an MFD with the oapiRegisterMFD method during setting up the 
panel in the overloaded clbkLoadPanel callback function: 
 
bool MyVessel::clbkLoadPanel (int id) 

{ 

  oapiRegisterPanelBackground (...); 

  ... 

  MFDSPEC mfds_left  = {{100, 10, 200, 110}, 6, 6, 10, 20}; 

  oapiRegisterMFD (MFD_LEFT,  mfds_left); 

  ... 

  return true; 

} 

 
The first parameter of oapiRegisterMFD identifies the MFD (left, right, or a user-defined 
MFD). The left and right MFDs can be controlled with keyboard commands, while user-de-
fined MFDs can only be controlled with the mouse. Therefore you should always first define 
the left and right MFDs, and use user-defined ones only if more than two MFDs are to be de-
fined in the panel. 
 
The second parameter is a structure which defines the layout of the MFD. It contains: 

 the rectangular area (left, top, right and bottom edge) of the panel area to contain the 
MFD display, 

 the number of buttons along the left and right edges, 

 the y-offset of the upper edge of the topmost button from the top edge of the display, 

 the y-distance between the top edges of the buttons. 
 
The button rows must be implemented as separate areas. Note that a single area is used for 
the left row of buttons, and another one for the right row. In addition, a bottom row of 3 
buttons can be defined to perform MFD on/off, display of button commands, and display of 
mode contents: 
 
bool MyVessel::clbkLoadPanel (int id) 

{ 

  oapiRegisterPanelBackground (...); 

  ... 

  MFDSPEC mfds_left  = {{100, 10, 200, 110}, 6, 6, 10, 20}; 

  oapiRegisterMFD (MFD_LEFT,  mfds_left); 

  oapiRegisterPanelArea (AID_LBUTTONS, _R(80,20,100,100), PANEL_REDRAW_USER, 

      PANEL_MOUSE_LBDOWN|PANEL_MOUSE_LBPRESSED, PANEL_MAP_BACKGROUND); 

  oapiRegisterPanelArea (AID_RBUTTONS,_R(200,20,220,100), PANEL_REDRAW_USER, 

      PANEL_MOUSE_LBDOWN|PANEL_MOUSE_LBPRESSED, PANEL_MAP_BACKGROUND); 

  oapiRegisterPanelArea (AID_BBUTTONS,_R(100,110,200,130),  

      PANEL_REDRAW_NEVER, PANEL_MOUSE_LBDOWN); 

  ... 

  return true; 

} 

 
The button areas have been defined with the PANEL_MOUSE_LBPRESSED flag in addition to 

PANEL_MOUSE_LBDOWN, so that continued mouse presses can be recorded when required. 
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Mouse button events now need to be processed in the mouse event handler: 
 
bool MyVessel::clbkPanelMouseEvent (int id, int event, int mx, int my) 

{ 

  switch (id) { 

  case AID_LBUTTONS: 

  case AID_RBUTTONS: 

    if (my%20 < 15) { 

      int bt = my/20 + (id == AID_LBUTTONS ? 0 : 6); 

      oapiProcessMFDButton (MFD_LEFT, bt, event); 

      return true; 

    } 

    break; 

  case ... 

  } 

  return false; 

} 

 
This code fragment processes all the buttons in the left and right button columns 
simultaneously. It first checks if the mouse event occurred over a button (my%20 < 15), 
assuming that each button is 15 pixels high, and buttons are spaced in 20 pixel intervals. It 
then checks if the event occurred in the left or right button column, and determines which of 
the buttons was pressed (bt). Finally, the oapiProcessMFDButton function is called with the 
appropriate parameters, to allow Orbiter to respond to the MFD request. 
 
The bottom row of buttons is processed similarly: 
 
  ... 

  case AID_BBUTTONS: 

    if (mx < 20) 

      oapiToggleMFD_on (MFD_LEFT); 

    else if (mx >= 30 && mx < 50) 

      oapiSendMFDKey (MFD_LEFT, OAPI_KEY_F1); 

    else if (mx > 60) 

      oapiSendMFDKey (MFD_LEFT, OAPI_KEY_GRAVE); 

    return true; 

  ... 

 
where oapiToggleMFD_on switches the MFD on/off, and the oapiSendMFDKey commands 
trigger the default actions of displaying the key commands and the MFD mode list. 
 
Of course, the values of the various mouse x and y values in an actual implementation will 
depend on the geometry of the individual MFD layout. You could even define each single 
button as a separate area, but this will generally result in less efficient code. 
 
Finally, the MFD buttons need to respond to redraw events, to reflect the change of button la-
bels (for example, when the MFD mode changes). Note that the MFD display area itself is 
automatically updated by Orbiter and therefore doesn't need to implement a redraw response. 
 
bool MyVessel::clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf) 

{ 

  switch (id) { 

  case AID_LBUTTONS: 

  case AID_RBUTTONS: 

    side = (id == AID_LBUTTONS ? 0:1); 

    hDC = oapiGetDC (surf); 

    for (int bt = 0; bt < 6; bt++) { 

      if (label = oapiMFDButtonLabel (MFD_LEFT, bt+side*6)) 

        TextOut (hDC, 5, 2+20*bt, label, strlen(label)); 

      else break; 

    } 

    oapiReleaseDC (surf, hDC); 

    return true; 

  case ... 
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  } 

  return false; 

} 

 
This uses the oapiMFDButtonLabel function to retrieve the label text for each of the buttons 
(button labels consist of 1 to 3 characters). The redraw function can be customised to reflect 
the style in which the button labels are displayed (for example by changing the font size or 
colour). 
 
Note that the bottom row of buttons does not necessarily need to implement a redraw 
method, because their labels never change. 

1.11.6 Multiple panels 

To implement multiple panels for a vessel, the clbkLoadPanel method must load different 
panels depending on the provided panel id, and each of the panels must define its connec-
tivity to neighbouring panels via the oapiSetPanelNeighbours function. 
 
Example: If your vessel supports a main panel, an overhead and a left side panel, the struc-
ture of the overloaded clbkLoadPanel could look like this: 
 
bool MyVessel::clbkLoadPanel (int id) 

{ 

  switch (id) { 

  case 0: // main panel 
    oapiRegisterPanelBackground (LoadBitmap (hDLL, 

       MAKEINTRESOURCE (IDB_PANEL0))); 

    oapiSetPanelNeighbours (2, -1, 1, -1); 

    // register areas for panel 0 here 
    break; 

  case 1: // overhead panel 
    oapiRegisterPanelBackground (LoadBitmap (hDLL, 

      MAKEINTRESOURCE (IDB_PANEL1))); 

    oapiSetPanelNeighbours (-1, -1, -1, 0); 

    // register areas for panel 1 here 
    break; 

  case 2: // left side panel 
    oapiRegisterPanelBackground (LoadBitmap (hDLL, 

      MAKEINTRESOURCE (IDB_PANEL2))); 

    oapiSetPanelNeighbours (-1, 0, -1, -1); 

    // register areas for panel 2 here 
    break; 

  } 

  return true; 

} 

 
Each panel must register its own background bitmap via the oapiRegisterPanelBackground 
function. 
 
In a vessel that defines multiple panels, the user can switch between them by using Ctrl-Ar-
row keys. Orbiter must know the relative location of bitmaps to each other, so that the correct 
panel can be loaded. This connectivity is provided by the oapiSetPanelNeighbours function. 
This function tells Orbiter which panels are to the left, right, top and bottom of the current 
panel. A value of –1 indicates that no panel is located at that side. 
 
Important: All the panel id’s defined during oapiSetPanelNeighbours must be supported by 
clbkLoadPanel. For example, if panel 0 calls oapiSetPanelNeighbours (2,-1,1,-1), then panels 
1 and 2 must be handled by clbkLoadPanel. 
 
All panels must call the oapiSetPanelNeighbours function, otherwise there is no way for the 
user to switch back to a different panel. Panel connectivities should usually be reciprocal, i.e. 
if panel 0 defines panel 1 as its top neighbour, then panel 1 should define panel 0 as its bot-
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tom neighbour. If only a single panel (panel 0) is supported, calling oapiSetPanelNeighbours 
is not necessary. 

1.12 Designing virtual cockpits 
The concepts used for defining virtual 3-D cockpits are similar to those of 2-D panels. They 
too are defined via a load function, mouse and redraw event handlers. In fact, some of the re-
draw methods defined for panel areas may be reused to update parts of the virtual cockpit 
textures, so it is useful to familiarise yourself with 2-D panel implementations before pro-
gressing to virtual cockpits. 

1.12.1 Defining a virtual cockpit 

A virtual cockpit requires a 3-D mesh representation. In principle it is possible to add the 
cockpit directly to the mesh used to represent the vessel in external views, and flag this mesh 
to be visible both in external and cockpit views (via the SetMeshVisibility method), but in gen-
eral it is more efficient to design a separate mesh for the cockpit which is visible only in virtual 
cockpit view mode (using SetMeshVisibility with the MESHVIS_VC flag). Make sure that the 
cockpit mesh is consistent with the external mesh. A good way to achieve this is by building 
the VC together with the external mesh in your 3D design program, but exporting the cockpit 
and the external parts to separate mesh files. 
 

 

Figure 3: A view of the DG virtual cockpit. 

To make the VC mode available in your mesh class, you must overload the clbkLoadVC 
method of the VESSEL2 class: 
 
bool MyVessel::clbkLoadVC (int id) 

{ 

  ... 

} 

 
This will allow the user to switch to VC mode with the F8 key. The id parameter is currently 
always 0. Eventually it will allow to select different cockpit positions. 
 
In the body of clbkLoadVC, you can define camera parameters: 
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bool MyVessel::clbkLoadVC (int id) 

{ 

  SetCameraOffset (_V(0,1.5,6.0)); 

  SetCameraDefaultDirection (_V(0,0,1)); 

  SetCameraRotationRange (RAD*120, RAD*120, RAD*70, RAD*70); 

  SetCameraShiftRange (_V(0,0,0.1), _V(-0.2,0,0), _V(0.2,0,0)); 

  ... 

} 

 
SetCameraOffset defines the camera (or pilot eye) position in the vessel coordinate frame. 
SetCameraDefaultDirection defines the default direction the pilot is looking toward, SetCam-
eraRotationRange defines how far he can turn his head left right, up and down, and SetCam-
eraShiftRange allows to simulate the pilot 'leaning' forward, left or right, for example to get a 
better view out of a window. 
 
Note that you only need to define these camera parameters here if they change between dif-
ferent cockpit view modes. If all camera modes use the same parameters, they can be de-
fined globally in the overloaded clbkSetClassCaps method. 
 
Once you have implemented the clbkLoadVC method thus far and defined the VC mesh, you 
should be able to compile the module and test the virtual cockpit mode in Orbiter. Try rotating 
the view with Alt+cursor keys, and 'leaning' with Ctrl+Alt+cursor keys. When you are satisfied 
with the camera parameters, you can proceed to activate VC areas. 

1.12.2 Defining active VC areas 

As with 2-D panels, virtual cockpit areas must be activated to allow dynamic updates or to 
respond to user input. This is how an active area is defined in clbkLoadVC: 
 
bool MyVessel::clbkLoadVC (int id) 

{ 

  ... 

  SURFHANDLE tex = oapiGetTextureHandle (vcmesh, 10); 

  oapiVCRegisterArea (AID_BUTTON, _R(0,0,20,10), PANEL_REDRAW_ALWAYS,  

      PANEL_MOUSE_LBDOWN, PANEL_MAP_BGONREQUEST, tex); 

  oapiVCSetAreaClickmode_Spherical (AID_BUTTON, _V(5,3.3,7.1), 2.5); 

  ... 

} 

 
As with 2-D panel area definitions, the first parameter of oapiVCRegisterArea defines a 
unique identifier for the area (AID_BUTTON in this case). The next parameter defines a rec-
tangular area (in pixel units) in a texture that is updated dynamically in a redraw event. If the 
area doesn't need to update any textures (e.g. because it only responds to mouse events, or 
because it provides visual feedback by modifying the mesh geometry), this parameter is ig-
nored and can be set to _R(0,0,0,0).  
 
The third parameter defines the events which trigger a redraw notification for the area. In this 
case we have set it to PANEL_REDRAW_ALWAYS, i.e. we request a redraw notification at 
each simulation frame (typical for gauges whose displays change constantly). Note that unlike 
2-D panels, the term 'redraw event' stands for any change in the visual representation of the 
area. This may consist of repainting a dynamic texture, but it could also mean a mesh group 
animation or direct editing of mesh vertices or texture coordinates. 
 
The fourth parameter defines the mouse events which trigger a notification for the area. They 
are used in the same way as 2-D panel areas, but an additional function call is required to de-
fine the mouse-sensitive area (see below). 
 
The fifth parameter defines the initial contents of the drawing bitmap passed to the redraw 
notification. It is used in the same way as for 2-D panels. However, if the redraw event does 
not update a dynamic texture, this must be set to PANEL_MAP_NONE. 
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The last parameter is a handle to the dynamic texture passed to redraw notifications. In this 
example, we have obtained the texture handle from mesh group 10 of the VC mesh via a call 
to oapiGetTextureHandle. Note that textures obtained for dynamic repainting must be labelled 
as dynamic in the mesh file (see next section). If the area does not need to redraw a texture 
during a redraw event, this parameter can be set to NULL. In that case, there is a shorter ver-
sion of oapiVCRegisterArea for convenience which omits the second, fifth and sixth parame-
ters. 
 
Unlike 2-D panels, the mouse-sensitive region of a VC area must be defined with a separate 
function call. In virtual cockpits, the sensitive region is a 3-D volume. Orbiter draws a virtual 
ray from the camera position through the screen point at which a mouse event occurred, and 
checks whether the ray intersects a mouse-sensitive volume. If so, the corresponding mouse 
event is generated. 
 
You can define either a spherical or a quadrilateral mouse-sensitive region. A spherical region 
is defined via the oapiVCSetAreaClickmode_Spherical method, where you specifiy the centre 
of the spherical region in the vessel frame of reference, and its radius. This will trigger a 
mouse event whenever the user clicks inside the projection of the sphere onto the simulation 
window. 
 
Quadrilateral (e.g. rectangular) regions are defined via the oapVCSetAreaClick-
mode_Quadrilateral method, where you specify the four corners of the mouse-sensitive re-
gion in space. Again, this will trigger mouse events whenever the user clicks inside the pro-
jection of the sensitive area on the simulation window. 
 
Spherical regions are slightly more efficient for Orbiter to test, but quadrilateral regions return 
information about the relative position at which the mouse click occurred, so they are some-
what more versatile. 

1.12.3 Defining dynamic textures 

One way to provide information to the pilot in VC mode is by repainting the bitmaps used to 
texture VC mesh groups. For example, you can implement gauges and data displays in this 
way. You may even be able to re-use a panel area redraw method used for 2-D panels to up-
date a VC texture, minimising the additional coding effort. 
 
Important: Orbiter can only draw into uncompressed textures. For this reason, textures which 
support dynamic repainting must be marked in the mesh file with a 'D' (dynamic), e.g. 
 
... 

Textures 2 

tex1.dds 

tex2_dyn.dds D 

 
Dynamic textures are less efficient than static ones, so you should try to keep them to a 
minimum. Collect all parts that require dynamic updates in one or few (small) texture files, and 
keep them apart from the static parts. 

1.12.4 The mouse event handler 

Whenever a mouse event occurs inside the mouse-sensitive volume of an active area, a 
notification is passed to your module. To respond to such events, you must overload the 
clbkVCMouseEvent method of the VESSEL2 class. 
 
bool MyVessel::clbkVCMouseEvent (int id, int event, VECTOR3 &p) 

{ 

  ... 

} 

 
where id is the area identifier, and event is the mouse event that triggered the notification 
(The VC notification uses the same event types as 2-D panels). 
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Parameter p returns some information about the mouse position at the event. The information 
returned depends on the area type for which the event was generated. For spherical regions, 
p.x contains the distance of the mouse position from the centre of the area, while p.y and p.z 
are not used. For quadrilateral regions, p.x and p.y contain the relative mouse x and y posi-
tions within the region, where the top left corner of the region has coordinates (0,0), and the 
bottom right corner has coordinates (1,1). This allows to define differentiated responses de-
pending on where in the region the event occurred, similar to the procedure in 2-D panel re-
gions. 
 
Inside clbkVCMouseEvent, your code must check the area id and perform the appropriate 
actions: 
 
bool MyVessel::clbkVCMouseEvent (int id, int event, VECTOR3 &p) 

{ 

  switch (id) { 

  case AID_BUTTON: 

    DoProcessButtonPress (...); 

    return true; 

  case ...  // place response to other areas here 
  } 

  return false; 

} 

1.12.5 The redraw event handler 

Any active areas which specified a redraw flag other than PANEL_REDRAW_NEVER during 
initialisation, will trigger redraw notifications for the appropriate events. Your code needs to 
overload the clbkVCRedrawEvent method of the VESSEL2 class to respond to those events. 
 
bool MyVessel::clbkVCRedrawEvent (int id, int event, SURFHANDLE surf) 

{ 

  ... 

} 

 
where id is the area identifier, event is the redraw event that triggered the notification, and 
surf is a handle to the dynamic texture to be redrawn. surf may be NULL if you didn't specify a 
texture during the area initialisation. 
 
Inside clbkVCRedrawEvent, check the area id and perform the appropriate redraw action for 
that area. Typically, this will be one of the following: 
 

 Repainting the dynamic texture passed to the notification handler. This is done in the 
same way as repainting 2-D panel areas. In fact, you may even be able to re-use the 
same code. Repainting textures is a good way to update displays and instrument 
gauges. 

 Animating a mesh group. This can be used to simulate flipping a switch or pushing a 
lever. See Section 1.10 for details on animations. 

 Editing a mesh. You can use the oapiMeshGroup function to access the vertices of a 
mesh group, and edit the vertex positions or texture coordinates. Editing texture co-
ordinates may be a good alternative to redrawing a texture if the texture is to switch 
between discrete pre-defined states. 

 
clbkVCRedrawEvent should return true only if you have modified the dynamic texture. If the 
texture was not modified, or is undefined, the function should return false. 

1.12.6 Defining MFDs in the virtual cockpit 

To define a multifunctional display inside a virtual cockpit, you need to perform the following 
steps: 
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Create a new group in the mesh consisting of a flat square area (defined by 4 vertices and 2 
triangles). This is going to be the MFD display. The texture coordinates of the vertices should 
be: top left corner: (0,0), top right corner: (1,0), bottom left corner: (0,1) and bottom right cor-
ner: (1,1). Set 'TEXTURE 0' and 'FLAG 3' for this group. This will exclude the group from 
normal rendering (Orbiter uses a special render pass for MFDs). You can select a material of 
your choice. A material with specular reflection will produce a 'glass surface' effect. 
 
In clbkLoadVC, define the MFD display with oapiVCRegisterMFD: 
 
bool MyVessel::clbkLoadVC (int id) 

{ 

  ... 

  static VCMFDSPEC mfds_left  = {1, 100}; 

  oapiVCRegisterMFD (MFD_LEFT, &mfds_left); 

  ... 

} 

 
VCMFDSPEC is a structure which contains the mesh index and group index of the MFD dis-
play group defined in the previous step. oapiVCRegisterMFD registers this group as an MFD 
display (in this case, the left MFD). 
 
Next, you need to define the MFD control buttons. How you implement them is mostly up to 
you. Typically, you define each button as a rectangle and collect all rectangles into a single 
mesh group. Reserve space on a dynamic texture for drawing the button labels, and set the 
texture coordinates for the button rectangles accordingly. 
Then you define an active area for each button to receive mouse events (but no redraw 
events). You also define a dummy area for redraw events. Pass the dynamic texture handle 
reserved for that purpose to the redraw area. This could look as follows: 
 
bool MyVessel::clbkLoadVC (int id) 

{ 

  ... 

  oapiVCRegisterArea (AID_LBUTTONS, _R(0,0,20,100),PANEL_REDRAW_USER, 

      PANEL_MOUSE_IGNORE, PANEL_MAP_BACKGROUND, tex); 

  oapiVCRegisterArea (AID_RBUTTONS,_R(20,0,40,100), PANEL_REDRAW_USER, 

      PANEL_MOUSE_IGNORE, PANEL_MAP_BACKGROUND, tex); 

  for (i = 0; i < 6; i++) { 

    oapiVCRegisterArea (AID_LBUTTON1+i, PANEL_REDRAW_NEVER, 

        PANEL_MOUSE_LBDOWN|PANEL_MOUSE_LBPRESSED); 

    oapiVCSetAreaClickmode_Spherical (AID_LBUTTON1+i, 

        _V(0.2,0.1-i*0.02,2.0), 0.01); 

    oapiVCRegisterArea (AID_RBUTTON1+i, PANEL_REDRAW_NEVER, 

        PANEL_MOUSE_LBDOWN|PANEL_MOUSE_LBPRESSED); 

    oapiVCSetAreaClickmode_Spherical (AID_RBUTTON1+i, 

        _V(0.4,0.1-i*0.02,2.0), 0.01); 

  } 

  ... 

} 

 
You should also define mouse-active areas for the three bottom MFD buttons. 
 
In the mouse event handler, trap any mouse clicks on the MFD buttons and pass them to the 
oapiProcessMFDButton function: 
 
bool MyVessel::clbkVCMouseEvent (int id, int event) 

{ 

  if (id >= AID_LBUTTON1 && id < AID_LBUTTON1+12) { 

    oapiProcessMFDButton (MFD_LEFT, id-AID_LBUTTON1, event); 

    return true; 

  } 

  ... 

  return false; 

} 
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In the redraw event handler, trap MFD button redraw requests and redraw the buttons as re-
quired: 
 
bool MyVessel::clbkVCRedrawEvent (int id, int event, SURFHANDLE surf) 

{ 

  switch (id) { 

  case AID_LBUTTONS: 

    RedrawMFDButtons (surf, MFD_LEFT, 0); 

    return true; 

  case AID_RBUTTONS: 

    RedrawMFDButtons (surf, MFD_RIGHT, 0); 

    return true; 

  case ... 

} 

 
where RedrawMFDButtons is assumed to be a locally defined function performing the redraw 
action. You may be able to re-use the same method used for drawing the MFD buttons in the 
2-D panel (see Section 1.11.5). 
 
Finally, trigger a redraw event in the body of the MFD mode change callback notification. 
 
void MyVessel::MFDMode (int mfd, int mode) 

{ 

  switch (mfd) { 

  case MFD_LEFT: 

    oapiTriggerVCRedrawArea (0, AID_LBUTTONS); 

    oapiTriggerVCRedrawArea (0, AID_RBUTTONS); 

    break; 

  case ... 

} 

1.12.7 Defining the HUD in the virtual cockpit 

< to be completed > 
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2 Planets and moons 
Orbiter allows to create new planets or planetary systems in a few simple steps. To create a 
new planet, you need to do the following: 
 

 find or create a surface texture map 

 optionally, find or create texture maps for a cloud layer, for a land/sea mask, and for night 
lights 

 convert the texture map(s) into Orbiter’s .tex format by invoking pltex 

 create a configuration file (.cfg) in the Config subfolder, containing physical and orbital 
planet parameters. 

 Add an entry for the planet in the configuration file of the planetary system (e.g. Sol.cfg). 

 Optionally, create a DLL plugin module to allow detailed control of planet movement and 
atmosphere definition. 

2.1 Planet texture maps 

2.1.1 Texture format 

Each planet has an associated surface texture file <pname>.tex, where <pname> is the 
planet’s name. Optionally, additional texture files <pname>_cloud.tex (for defining a cloud 
layer), <pname>_lmask.tex (for defining a land area mask) and <pname>_lights.tex (for 
defining surface night lights) may be present. 
Each texture file contains a series of texture maps, stored as DirectDraw surfaces (dds) in 
DXT1 compression format. 
ORBITER uses a variable resolution approach for both meshes and texture maps to render 
planetary surfaces. The rendering resolution level is determined by the apparent radius of the 
planet. At low resolutions ORBITER uses a single spherical mesh covered by a single texture. 
At higher resolutions the spherical surface is constructed from a series of sphere patches, 
each containing its own texture patch. This method allows efficient rendering by removing 
hidden patches before invoking the rendering pipeline. 
ORBITER currently supports 9 resolution levels for planetary surfaces, as listed in Table 1. At 
the highest resolution the sphere is constructed from 364 patches with an effective texture 
resolution of 16384x8192. Figure 4 shows a detail of the Martian surface rendered at different 
resolution levels. 
 

Level Resolution* Mesh 
patches 

Triangles 
(total)** 

Texture memory*** 

with DXT1 w/o DXT1 

1 64 x 64 1 144 2K 16K 

2 128 x 128 1 256 10K 80K 

3 256 x 256 1 576 42K 336K 

4 512 x 256 2 1024 106K 848K 

5 1024 x 512 8 2592 362K 2.9M 

6 2048 x 1024 24 4672 1.1M 9.0M 

7 4096 x 2048 100 25440 4.3M 34.6M 

8 8192 x 4096 364 116448 16.0M 127.8M 

9 16384 x 8192 1456 276640 63.9M 511.2M 

Table 1: Supported resolution levels for planetary surfaces. 

*Resolution: Effective texture map resolution at the equator. 
**Triangles: This is the total number of triangles for all patches. In practice fewer triangles will 
be rendered because hidden patches are removed before entering the rendering pipeline. 
***Texture memory: Video/AGP memory required to hold texture maps up to this resolution 
level for a single planet. With DXT1: video hardware supports DXT1 texture compression. 
W/o DXT1: video hardware doesn’t support DXT1 texture compression. 
 
High resolution levels require significant amounts of video/AGP memory and should only be 
used on systems with adequate 3D graphics subsystems. On older graphics cards which do 
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not natively support DXT1 texture compression ORBITER needs to convert textures into 
RGBA format which increases memory requirements 8-fold. Conversion to RGBA will also 
dramatically increase the loading time when starting ORBITER. 
 

 

Important: Do not try to use resolution level  8 if your video card does not support DXT1 
texture compression or has less than 32MB of texture memory! 

 

 

Figure 4: Mars texture detail at resolution levels 5, 6, 7 and 8 (from left). 

2.1.2 Where ORBITER looks for textures 

ORBITER first searches for the texture file in the location specified by the HightexDir entry 

in the Orbiter.cfg file. If the texture file is not found or if HightexDir is not defined then 

ORBITER searches in the directory specified by the TextureDir entry. This allows switching 

between high and low resolution texture maps conveniently by inserting or removing the 

HightexDir entry. 

If no texture file is found then the planet is rendered without a surface texture. 

Each planet’s configuration file <pname>.cfg contains an entry MaxPatchResolution which 

defines the maximum texture resolution level to use with this planet (valid range 1 to 8). If the 

texture file contains higher resolution levels than defined by MaxPatchResolution then the 

additional resolutions are skipped. This allows reducing texture memory requirements without 
modifying the texture file. If the texture file contains fewer resolution levels than defined by 

MaxPatchResolution then the maximum resolution is reduced accordingly. 

2.1.3 Using pltex to generate custom planet textures 

If you prefer, you can use your own planet maps instead of those provided by ORBITER. The 
ORBITER download page contains a planet texture conversion tool (pltex) which allows to 
convert planet maps from BMP bitmap format to ORBITER’s texture format. It resamples the 
map to the requested resolutions, splits it into surface patches and converts them to DXT1 
compressed texture format. 
The source map should contain the complete surface in spherical projection, where the left 
edge corresponds to longitude 180°W, the right edge to longitude 180°E, the bottom edge to 
latitude 90°S, and the top edge to latitude 90°N. The width/height ratio of the bitmap should 
be close to 2/1. 
Pltex requires the source map in 24bit or 8bit Windows BMP format. If your map is in any 
other format (e.g. JPEG or GIF) you need to convert it into BMP (using your favourite graph-
ics conversion tool) before invoking pltex. 
 
Synopsis: 

pltex [–i <mapname>] [-l <minres> -h <maxres>] [-9] 

 
<mapname>: source texture file name 
<minres>: minimum resolution level (1..8) 
<maxres>: maximum resolution level (<minres>..8) 
 

 If command line options are omitted then pltex requests values interactively. 

 If a higher maximum resolution is requested than can be obtained from the source map, 
pltex adjusts the maximum resolution accordingly. See Table 1 for map resolutions at the 
various resolution levels. 
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 The only justification for <minres> 1 is if you want to compose certain resolution levels 
from a different source map, e.g. generate Earth resolution levels 1 to 7 from a map that 
includes clouds, and level 8 from a map without clouds. In that case pltex must be run 
twice, and the output texture files concatenated. 

 The option to use alpha (transparency) maps is intended for semi-transparent cloud 
maps. 

 You can use pltex to generate a set of level 9 texture patches by specifying the –9 
command line option. In that case, both <minres> and <maxres> must be set to 9. Note 
that level 9 textures are treated differently to levels 1-8. Level 9 is not automatically 
assembled into the <planet>.tex file. Instead, after generating the individual patches 
(1456 in total!) with pltex, you need to run the TileManager application bundled with the 
Orbiter base package to add patches into the <planet>_tile.tex file containing high-
resolution patches. See the TileManager help file for details. 

 
Pltex will generate a texture file <mapname>.tex. If necessary, rename to <pname>.tex where 

<pname> is the planet’s name, and copy to the TextureDir directory (usually “Textures”) or 

HightexDir directory (usually “Textures2”). 

 
Note: 
Generating high-resolution texture maps (level 8 and higher) may take a long time and 
requires a large amount of system memory. 

2.2 Planet modules 
Planet modules can be used to control the motion of a planet (or any other celestial body, 
such as a moon, the sun, or an asteroid) within the solar system. This allows to implement 
sophisticated analytic ephemerides solutions which take into account perturbations from other 
celestial objects. 
 
Planets which are not controlled via a DLL module are updated directly by Orbiter. Depending 
on the settings in the definition file, Orbiter either uses an unperturbed 2-body approximation, 
resulting in a conic section trajectory (e.g. an ellipse), or uses a dynamic update procedure 
based on the gravitational forces acting on the planet. Both methods have limitations: the 2-
body approach ignores perturbations and is only valid if no massive bodies other than the 
orbit reference object are nearby. The dynamic update accumulates numerical errors over 
time, causing the orbits slowly to diverge from the correct trajectories. 
 
By using a planet module, analytic perturbation solutions can be used which avoid the short-
comings of the methods described above. Perturbation solutions typically describe the per-
turbed orbit of a planet by expressing the state vectors as a trigonometric series. These series 
are valid over a limited period of time, after which they start to diverge. Examples of perturba-
tion solutions used in Orbiter are the VSOP87 solution for the 8 major planets and the sun, or 
the ELP2000 solution for the moon. 
 
Planet modules can also define an atmosphere model for the celestial body. Atmosphere 
models return atmospheric data (temperature, density and pressure) at a specified altitude 
(and other optional parameters, such as geographic position and time). Atmospheric models 
can be implemented either directly in the planet module, or in a separate plugin module. 
Putting the atmosphere model into a separate plugin makes it easier to swap models later. 
 
The following sections give a brief introduction into the design of planet modules. A general 
knowledge of writing orbiter plugins is assumed. 

2.2.1 First steps 

Create a new DLL project for your planet module, e.g. in Orbitersdk\samples\MyPlanet. Set 
up all the usual include and library paths for Orbiter plugins. Add orbiter.lib and orbitersdk.lib 
as additional dependencies. 
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2.2.2 The CELBODY2 interface class 

The communication between the Orbiter core and the planet module is performed via callback 
functions defined in the CELBODY and CELBODY2 classes. (CELBODY2 is derived from 
CELBODY and contains all the properties of the base class, plus a significantly extended 
atmospheric parameter interface.) The CELBODY interface is retained for backward 
compatibility, but all new planet modules should refer to the CELBODY2 interface. 
 
We now need to the class interface for the new planet module by deriving a custom class 
from CELBODY2. Create a new header file in your project, e.g. MyPlanet.h, and add the 
following: 
 
#include "OrbiterAPI.h" 

#include "CelbodyAPI.h" 

 

class DLLEXPORT MyPlanet: public CELBODY2 { 

public: 

    MyPlanet (OBJHANDLE hObj); 

    void clbkInit (FILEHANDLE cfg); 

    int clbkEphemeris (double mjd, int req, double *ret); 

    int clbkFastEphemeris (double simt, int req, double *ret); 

}; 

 
OrbiterAPI.h contains the general API interface, and CelbodyAPI.h contains the planet mod-
ule-specific interface, in particular the CELBODY, CELBODY2 and ATMOSPHERE classes. 
 
The clbkEphemeris and clbkFastEphemeris methods are callback functions which Orbiter will 
call whenever the planet positions and velocities ("ephemerides") need to be updated. They 
will be described in more detail below. The clbkInit method is called by Orbiter after the planet 
module has been loaded. It receives a file handle for the planet's configuration file. This 
allows the module to read configuration parameters from the file. 
The CELBODY2 interface contains a few more methods related to defining an atmospheric 
model. These will be discussed below. Check the API Reference manual for a complete list of 
class methods.  
 
To implement the methods in our MyPlanet class, create a source file in your project, e.g. 
MyPlanet.cpp. Add the following lines: 
 
#define ORBITER_MODULE 

#include "MyPlanet.h" 

 

MyPlanet::MyPlanet (OBJHANDLE hObj): CELBODY2 (hObj) 

{ 

  // add constructor code here 
} 

 

void MyPlanet::clbkInit (FILEHANDLE cfg) 

{ 

  // read parameters from config file (e.g. tolerance limits, etc) 
  // perform any required initialisation (e.g. read perturbation terms from data files) 
} 

 

bool MyPlanet::bEphemeris() const 

{ 

  return true; 

  // class supports ephemeris calculation 
} 

 

int clbkEphemeris (double mjd, int req, double *ret) 

{ 

  // return planet position and velocity for Modified Julian date mjd in ret 
} 

 

int clbkFastEphemeris (double simt, int req, double *ret) 
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{ 

  // return interpolated planet position and velocity for simulation time simt in ret 
} 

 
The first line defining ORBITER_MODULE is required to ensure that all initialisation functions 
are properly called by Orbiter. 
 
clbkEphemeris and clbkFastEphemeris are the functions which will contain the actual 
ephemeris calculations for the planet at the requested time. clbkEphemeris is only called by 
Orbiter if the planet’s state at an arbitrary time is required (for example by an instrument 
calculating the position at some future time). When Orbiter updates the planet’s position for 
the next simulation time frame, the clbkFastEphemeris function will be called instead. This 
means that clbkFastEphemeris will be called at each frame, each time advancing the time by 
a small amount. This can be used for a more efficient calculation. Instead of performing a full 
series evaluation, which can be lengthy, you may implement an interpolation scheme which 
performs the full calculation only occasionally, and interpolates between these samples to 
return the state at an intermediate time. 
 
For both functions, the requested type of data is specified as a group of EPHEM_xxx bitflags 
in the req parameter. This can be any combination of position and velocity data for the 
celesital body itself and/or the barycentre of the system defined by the body and all its 
children (moons). The functions should calculate all required data, either in cartesian or polar 
coordinates, and fill the ret array with the results. ret contains 12 entries, used as follows: 

ret[0-2]: true position 
ret[3-5]: true velocity 
ret[6-8]: barycentric position 
ret[9-11]: barycentric velocity 

Only the fields requested by req need to be filled. In cartesian coordinates, the position fields 
must contain the x, y and z coordinates in [m], and the velocity fields must contain the 
velocities dx/dt, dy/dt, dz/dt in [m/s]. In spherical polar coordinates, the position fields must 

contain longitude  [rad], latitude  [rad] and radial distance r [AU], and the velocity fields 

must contain the polar velocities d /dt [rad/s], d /dt [rad/s] and dr/dt [AU/s]. 
The functions should indicate the fields actually calculated via the return value. This is in 
particular important if not all requests could be satisified (e.g. position and velocity was 
requested, but only position could be calculated). The return value is interpreted as a bitflag 
that can contain the same EPHEM_xxx flags as the req parameter. If all requests could be 
satisfied, it should be identical to req. In addition, the return value should contain additional 
flags indicating the properties of the returned data, including EPHEM_POLAR if the data are 
returned as spherical polar coordinates, or EPHEM_TRUEISBARY if the true and barycentric 
coordinates are identical (i.e. the celestial body does not have child bodies). 

2.2.3 The API interface 

Next, we need to define the API interface that will allow Orbiter to load an instance of the 
celestial body interface. This is done by implementing the InitInstance and ExitInstance 
functions in MyPlanet.cpp: 
 
DLLCKBK CELBODY *InitInstance (OBJHANDLE hBody) 

{ 

  // instance initialisation 

  return new MyPlanet; 

} 

 

DLLCLBK void ExitInstance (CELBODY *body) 

{ 

  // instance cleanup 

  delete (MyPlanet*)body; 

} 
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InitInstance and ExitInstance are called by Orbiter each time an instance of the planet is 
loaded or discarded. There are also functions InitModule and ExitModule, which are called 
only once per simulation run, and can be used to initialise and clean up global resources: 
 
DLLCLBK void InitModule (HINSTANCE hModule) 

{ 

  // module initialisation 

} 

 

DLLCLBK void ExitModule (HINSTANCE hModule) 

{ 

  // module cleanup 

} 

 
Because usually only a single instance of a specific planet object is created during a 
simulation, the difference between InitInstance and InitModule is not as significant here as it is 
for vessel modules. The InitModule and ExitModule methods can be omitted if the module 
doesn’t need any global parameter initialisation. 

2.3 Defining an atmosphere 
Planetary atmospheres have a significant influence on the flight behaviour of spacecraft. The 
primary atmospheric parameters are temperature, pressure and density as a function of alti-
tude. 
 
Defining a simple atmospheric model is possible by setting a few parameters in the planet’s 
configuration file. More sophisticated models must be coded in the planet’s DLL module. 
 
Orbiter currently does not model local atmospheric perturbations (climatic/weather effects), 
although local temperature and pressure variations can be implemented by customised at-
mosphere models. 

2.3.1 A simple atmosphere 

To define a simple exponentially decaying atmosphere, define the following items in the 
planet’s configuration (.cfg) file: 
 

AtmPressure0: The static atmospheric pressure [Pa] at altitude zero, p0. 

AtmDensity0: The atmospheric density [kg/m
3
] at altitude zero, 0. 

AtmAltLimit: The altitude above which atmospheric effects can be neglected. 

 

where altitude zero is defined as distance Size (as defined in the configuration file) from the 

planet’s centre. 
 
The pressure and density at any altitude h is then calculated by Orbiter as 
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C , and g0 is the gravitational acceleration at altitude zero. 

This model assumes constant temperature. 

2.3.2 A more sophisticated atmosphere 

Where the simple model described above is not adequate, a more detailed atmospheric 
model can be implemented in a plugin module. This section assumes that a module for the 
celestial body has already been created, as outlined in Section 2.2. 
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The atmosphere model interface is described by the ATMOSPHERE class defined in Celbo-
dyAPI.h. To create a custom atmosphere model, create a new header file in your planet proj-
ect, e.g. MyAtmosphere.h. The atmosphere class interface should look like 
 
#include "OrbiterAPI.h" 

#include "CelbodyAPI.h" 

 

class DLLEXPORT MyAtmosphere: public ATMOSPHERE { 

public: 

  MyAtmosphere (CELBODY2 *body); 

  const char *clbkName () const; 

  bool clbkConstants (ATMCONST *atmc) const; 

  bool clbkParams (const PRM_IN *prm_in, PRM_OUT *prm_out); 

}; 

 
The constructor takes the CELBODY2 class instance of the associated celestial body as a pa-
rameter. 
 
The clbkName callback function should return a short name identifying the model. 
 
The clbkConstants callback function should return in atmc some basic atmosphere parame-
ters, such as the mean density and pressure at ground level, gas constant and ratio of spe-
cific heats, as well as some rendering parameters. 
 
Note that some of the parameters returned by clbkConstants may be overwritten by the set-
tings defined in the celestial body's configuration file. Configuration file entries take prece-
dence over clbkConstants. 
 
The clbkParams callback function should return atmospheric temperature, density and pres-
sure at the location specified by the data in the prm_in parameter. Simple models may de-
pend on altitude only, but more sophisticated models can make use of the additional pa-
rameters such as position (longitude and latitude), solar flux, geomagnetic index, and date. 
 
Create a source file, e.g. MyAtmosphere.cpp, to implement the actual model. A very simplistic 
implementation may look like this: 
 
#include "MyAtmosphere.h" 

 

static double T0       = 288.0;  // ground level temperature [K] 

static double p0       = 101325; // ground level pressure [Pa] 

static double rho0     = 1.2250; // ground level density [kg/m^3] 

static double R        = 286.91; // gas constant 

static double gamma    = 1.4;    // ratio of specific heats 

static double altlimit = 200e3;  // cutoff altitude 

static double C        = rho0/p0; 

 

MyAtmosphere::MyAtmosphere (CELBODY2 *body): ATMOSPHERE (body) 

{ 

} 

 

const char *MyAtmosphere::clbkName () const 

{ 

  static char *name = "Simple"; 

  return name; 

} 

 

bool MyAtmosphere::clbkConstants (ATMCONST *atmc) const 

{ 

  atmc->p0       = p0; 

  atmc->rho0     = rho0; 

  atmc->R        = R; 

  atmc->gamma    = gamma; 

  atmc->altlimit = altlimit; 

  return true; 
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} 

 

bool MyAtmosphere::clbkParams (const PRM_IN *prm_in, PRM_OUT *prm_out) 

{ 

  double z = (prm_in->flag & PRM_ALT ? prm_in->alt : 0.0); 

  if (z < 200e3) { 

    double scale = exp (-C*z); 

    prm_out->T = T0; 

    prm_out->rho = rho0 * scale; 

    prm_out->p   = p0   * scale; 

    return true; 

  } else { 

    prm_out->T   = 0; 

    prm_out->rho = 0; 

    prm_out->p   = 0; 

    return false; 

  } 

} 

 
The above example serves only as an illustration. The actual atmosphere models provided 
with the Orbiter distribution are more complex. For some background on the supported Earth 
atmosphere models, see the technical note in Doc\Technotes\earth_atm.pdf. 
 
Now we need to link the atmosphere model into the celestial body interface. This can be done 
with the SetAtmosphere function of the CELBODY2 class. Add the following statement to the 
clbkInit method of your MyPlanet definition: 
 
#include "MyAtmosphere.h" 

 

void MyPlanet::clbkInit (FILEHANDLE cfg) 

{ 

  SetAtmosphere (new MyAtmosphere (this)); 

} 

 
The atmosphere instance will be destroyed automatically when the planet instance is deleted. 

2.3.3 External atmosphere modules 

Instead of implementing the atmosphere model inside the planet module, it can can also be 
implemented in a separate plugin module. This makes it easier to exchange the atmosphere 
model for a different one later on, without having to have access to the rest of the planet 
module code. 
 
To implement the atmosphere as a separate module, create a new DLL project for it. Add the 
MyAtmosphere.h and MyAtmosphere.cpp files created in the previous section to the project. 
Since the atmosphere is now defined in its own module, add the line 
 
#define ORBITER_MODULE 

 
on top of MyAtmosphere.cpp 
 
In addition, you need to define an API interface to the module code. It should look like this: 
 
DLLCLBK void InitModule (HINSTANCE hModule) 

{ 

  // module initialisation 

} 

 

DLLCLBK void ExitModule (HINSTANCE hModule) 

{ 

  // module cleanup 

} 

 

DLLCLBK ATMOSPHERE *CreateAtmosphere (CELBODY2 *cbody) 
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{ 

  return new MyAtmosphere (cbody); 

} 

 

DLLCLBK void DeleteAtmosphere (ATMOSPHERE *atm) 

{ 

  delete (MyAtmosphere*)atm; 

} 

 
By convention, external planetary atmosphere modules should be placed in the 
Modules\Celbody\<Name>\Atmosphere folder, where <Name> is the celestial body's name. 
So in our case, Modules\Celbody\MyPlanet\Atmosphere\MyAtmosphere.dll. 
 
We now need to modify the MyPlanet code to allow it to load its atmosphere interface from an 
external module. Replace the SetAtmosphere statement in the clbkInit function with 
 
void MyPlanet::clbkInit (FILEHANDLE cfg) 

{ 

  LoadAtmosphereModule ("MyAtmosphere"); 

} 

 
However, this causes the atmospheric module name to be hardcoded in the planet module. A 
more flexible method is to specify the atmospheric module in the celestial body's configuration 
file, using the MODULE_ATM entry. Our MyPlanet.cfg file might look like this: 
 
NAME = MyPlanet 

MODULE = MyPlanet 

MODULE_ATM = MyAtmosphere 

 
If the MODULE_ATM entry is defined in the configuration file, then the default 
CELBODY2::clbkInit implementation will load the atmosphere module directly, so we only 
need to make sure to call the base class method: 
 
void MyPlanet::clbkInit (FILEHANDLE cfg) 

{ 

  CELBODY2::clbkInit (cfg); 

} 

 
Calling the CELBODY2::clbkInit method also enables another interesting feature: Before 
reading the MODULE_ATM entry in the planet configuration file, Orbiter scans the Con-
fig\<Name>\Atmosphere.cfg file for an entry "Model" and uses that, if present. This file is 
written by the Atmosphere configuration tool in the Extra tab of the Orbiter launchpad, which 
provides a convenient method for users to change atmosphere models. This mechanism al-
lows to add new atmosphere modules without the need to change any configuration files. As 
long as the atmosphere DLL modules are placed in the correct location (Mod-
ules\Celbody\<Name>\Atmosphere), they will be scanned automatically by the atmosphere 
selector tool. 

2.3.4 Adding and replacing atmosphere models 

Most of the celestial body modules in the default Orbiter distribution have built-in support for 
external atmosphere modules, and some of them (Earth, Mars and Venus) come with one or 
several atmosphere modules. To add additional choices for atmosphere models for a body, 
create one as outlined above, and simply drop the DLL library into the Mod-
ules\Celbody\<Name>\Atmosphere folder. If that folder doesn't exist yet, you have to create it. 
The user can then select the new model from the Extra tab in the Orbiter Launchpad 
(Celestial body configuration | Atmosphere configuration). 
 
For best support of the atmosphere model selection tool, your atmosphere module should 
contain two additional API functions: 
 
DLLCLBK char *ModelName () 
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{ 

  static char *name = "MyAtmosphere"; 

  return name; 

} 

 

DLLCLBK char *ModelDesc () 

{ 

  static char *desc = "My custom atmosphere model"; 

  return desc; 

} 

 
The string returned by the ModelName function represents the model in the dialog's selection 
list box. The string returned by ModelDesc should contain a short description (max 256 char-
acters displayed in the dialog box when the model is selected. 
 
If you don't want to design your own custom atmosphere model, you can quickly add atmos-
pheres to planets by replicating existing ones. Simply copy an atmosphere module from the 
Modules\Celbody\<Name>\Atmosphere folder of one planet to that of another one. It then be-
comes available in the list of atmospheres for that planet. Note that the module only provides 
the physical atmospheric parameters. You will still have to edit the definition file to provide 
visual effects. 
 
Of course, replicating an atmosphere should be regarded as a quick and dirty trick for ex-
perimentation. Atmospheres are always tailor-made for specific bodies, and don't realistically 
fit anywhere else. 

2.3.5 Earth default atmosphere models 

The Orbiter distribution contains three Earth atmosphere models that can be selected by the 
user from the Extra tab in the Launchpad dialog. See Doc\Technotes\earth_atm.pdf for further 
details on the different models. 
 
Jacchia71-Gill Atmosphere Model. This is an implementation of the Jacchia-71 (J71) 
model

1
, using a polynomial series approximation by Gill

2
. It uses a static US Standard Atmos-

phere model below 90km, and a diffusion-equilibrium solution between 90 and 2500km alti-
tude. The only model parameter is the exospheric temperature. 
 
NRLMSISE-00 Atmosphere Model. This model is based on the MSISE90 model, with the 
addition of further corrections based on observation data. MSISE90 provides the neutral tem-
perature and density from ground level to thermospheric altitudes. Unlike the Jacchia models, 
the low-altitude data are not static, but vary with location. 
 
Orbiter 2006 Legacy model. This is the model that was used in the Orbiter 2006 Edition. It is 
based on a static standard model

3
 below 105km, and assumes constant temperature and ex-

ponentially decaying density and pressure between 105 and 200km. This model underesti-
mates density and pressure above ~120km, which reduces the orbit decay of object in low 
Earth orbit. 
 
In addition, the atmosphere can be disabled for testing/debugging purposes. 

2.3.6 Mars atmosphere 

Orbiter uses the following atmospheric parameter profiles for Mars: 
 
Altitude [km] 0 2 4 14 20 30 
Temperature [K] 195 200 200 180 180 165 
Pressure [Pa] 610.0 499.5 410.1 145.1 75.2 23.9 
Density [kg m

-3
] 0.02 0.0160 0.0131 0.0052 2.7 10

-3
 9.3 10

-4
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Atmospheric parameters: 

Surface pressure: p0 = 610.0 Pa 

Surface density: 0 = 0.020 kg m
-3

 

Ratio of specific heats:  = 1.2941 
Specific gas constant: R = 188.92 J K

-1
 kg

-1
 

 
Orbiter defines the upper atmosphere altitude limit as 100 km. 

2.3.7 Venus atmosphere 

Orbiter uses the following atmospheric parameter profiles for Venus: 
 
Altitude [km] 0 30 60 70 90 200 
Temperature [K] 750 480 230 230 180 180 
Pressure [Pa] 9.2M 897k 14.2k 1.85k 18.5 3.4 10

-11
 

Density [kg m
-3

] 65 9.9 0.33 0.043 5.4 10
-4

 1.0 10
-15
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Atmospheric parameters: 

Surface pressure: p0 = 9.2 MPa 

Surface density: 0 = 65 kg m
-3

 

Ratio of specific heats:  = 1.2857 
Specific gas constant: R = 188.92 J K

-1
 kg

-1
 

 
Orbiter defines the upper atmosphere altitude limit as 200 km. The cloud layer is set at an 
altitude of 60 km. 

2.3.8 The speed of sound 

Orbiter uses the equation for an ideal gas to compute the speed of sound as a function of 
absolute temperature: 

RTa  

where  is the ratio of specific heat at constant pressure cp, and specific heat at constant 

temperature, cv, for the gas, 
vp cc /  For air at normal conditions,  = 1.4. This value is used 

by Orbiter as a default. It can be overridden by setting the AtmGamma parameter in the 

planet’s configuration file. 
R is the specific gas constant. By default, Orbiter uses the value for air, 286.91 J K

-1
 kg

-1
. This 

can be overridden by setting the AtmGasConstant parameter in the planet’s configuration 

file. 
 
Mach number: The Mach number is an essential parameter in aerodynamics. It expresses a 
velocity v in units of the current speed of sound: 

M = v/a 
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